Stacked Diodes for Pulsed Power Applications: New Process Integration Scheme

2021 ◽  
Vol MA2021-02 (31) ◽  
pp. 1868-1868
Author(s):  
Alex Usenko ◽  
Anthony N Caruso ◽  
Stteven L Bellinger
Author(s):  
Kota Tomita ◽  
Tatsuya Shiraishi ◽  
Hiroaki Kato ◽  
Hiroyuki Kishimoto ◽  
Katsura Miyashita ◽  
...  

2012 ◽  
Vol 2012 (1) ◽  
pp. 000148-000153
Author(s):  
Karl Malachowski ◽  
Karen Qian ◽  
Maaike Op de Beeck ◽  
Rita Verbeeck ◽  
George Bryce ◽  
...  

Material selection is the key issue when developing a biocompatible packaging process for implantable electronic systems. To secure a reliable performance of the chip in such a package, its encapsulation has to be considered up-front in the wafer-level integration scheme. A differentiation of two main material types can be made:1) Insulating or passive materials functioning as a bi-directional diffusion barrier preventing body fluids leaking into the package causing systems malfunction due to possible materials corrosion and also avoiding a leakage of built-in materials to the in-vivo environment and2) Conductive or active materials as diffusion barriers, e.g. against copper diffusion or as direct external contacts responsible for electrical performance of the system. This study investigates the properties of two widely used insulating materials in the semiconductor industry, the nitride and the oxide. Both material types are deposited in a PECVD system using different temperatures; 400 ° C for CMOS compatibility and 200 ° C for wafer back side process integration when a temporary carrier system is used. The biocompatibility investigations of these materials (evaluated using cell lines and primary cells) show promising results. However, for the long term application, the stability results for the oxide layers show hydration effects resulting in material degradation where the nitride layers clearly show corrosion and are even etched when elevated temperatures are applied. This fact is surprising since nitride layers are widely used as a humidity barrier for various chip types but obviously not suitable for a direct contact with liquids. Various analysis methods using e.g. Fourier Transformed IR Spectroscopy or mass measurements substantiate this thesis.


2018 ◽  
Vol 282 ◽  
pp. 152-157 ◽  
Author(s):  
Hu Shan Cui ◽  
Kai Hua Cao ◽  
You Guang Zhang ◽  
Hua Gang Xiong ◽  
Jia Qi Wei ◽  
...  

In this work, a novel process integration scheme for p-MTJ devices’ passivation and contacting was proposed. The method can efficiently protect the ferromagnetic metals and the magnesium oxide which are the key building block of p-MTJs, and effectively make electrical contact with the interconnect metals for p-MTJs. The scheme consists of passivation of p-MTJs with dual dielectrics - silicon nitride and silicon oxide, followed by planarization and selective wet etch. The proposed integration scheme was successfully demonstrated with 80 nm size p-MTJ devices.


2000 ◽  
Vol 612 ◽  
Author(s):  
Naoto Miyashita ◽  
Shin-ichiro Uekusa ◽  
Takeshi Nishioka ◽  
Satoko Iwami

AbstractChemical-Mechanical Polishing has been revealed as an attractive technique for poly-Si of trench planalization. Major issue of the process integration is pattern erosion after over polishing. A new process with silica slurry containing organic surfactant is reported in this paper. A patterned wafer after conventional CMP process is eroded by over polishing, however, the new process conducts small erosion for wide trenches. The organic surfactant is well known as a inhibitor for the protection of poly-Si from alkaline, and the new slurry shows a large pH dependency of the viscosity. The experimental work has been focused on the viscosity, and the mechanism of the small erosion is discussed. This new process should be useful for recessing poly-Si by CMP, because it keeps the erosion level very low.


Author(s):  
Takhyun Yoon ◽  
Koocheol Joung ◽  
Jinho Kim ◽  
Woncheol Cho ◽  
Wouns Yang ◽  
...  

2015 ◽  
Vol 2015 (DPC) ◽  
pp. 000143-000181
Author(s):  
Pascal COUDERC ◽  
Jérôme NOIRAY

Based on Wire free Die on Die disruptive technology (WDoDTM), complex SiPs can be manufactured in a small factor package size. Stacking known good rebuilt wafers allows high yields while integrating high performance devices (1). Wafer processing is done with e-WLB technology and a specific redistribution layer (RDL) is designed to match with 3D PLUS bus metal edge interconnect technology. 300 mm rebuilt wafers are processed and thinned down to 200 μm before stacking and polymer bonding. Bonding alignment is within ±5 μm allowing small lateral pitches demonstrating WDoDTM versatility with denser IO products such as FPGA. Besides, this new process integration scheme allows the stacking of both conventional boards with SMDs not available at wafer level together with rebuilt wafers made of known good dies. WDoDTM technology has been successfully used with different kind of products in the defense and medical markets. A calculator node including a 484 I/O FPGA with 2 mDDR and an EEPROM in addition to more than 150 decoupling capacitors was manufactured and is exhibiting better electrical performance when compared to the 2 dimensions version. Moreover, a medical implant has been successfully developed embedding 2 ASICS and several PICS capacitors allowing an 8 times shrink of the electronics compared to advance lead based pacemakers.. With this new technology, 3D PLUS is highlighting the way to highly integrated System in Package (SiP) and demonstrates its know-how in the three dimensional integration.


2000 ◽  
Vol 613 ◽  
Author(s):  
Naoto Miyashita ◽  
Shin-ichiro Uekusa ◽  
Takeshi Nishioka ◽  
Satoko Iwami

ABSTRACTChemical-Mechanical Polishing has been revealed as an attractive technique for poly-Si of trench planalization. Major issue of the process integration is pattern erosion after over polishing. A new process with silica slurry containing organic surfactant is reported in this paper. A patterned wafer after conventional CMP process is eroded by over polishing, however, the new process conducts small erosion for wide trenches. The organic surfactant is well known as a inhibitor for the protection of poly-Si from alkaline, and the new slurry shows a large pH dependency of the viscosity. The experimental work has been focused on the viscosity, and the mechanism of the small erosion is discussed. This new process should be useful for recessing poly-Si by CMP, because it keeps the erosion level very low.


2001 ◽  
Vol 671 ◽  
Author(s):  
David K. Watts ◽  
Yusuke Chikamori ◽  
Tatsuya Kohama ◽  
Norio Kimura ◽  
Koji Mishima ◽  
...  

The introduction of Chemical Mechanical Polishing (CMP) into semiconductor device processing brought a significant need for wet chemistry research and development in this industry. With the transition from aluminum to copper for advanced interconnect metallization came a tremendous amount of electrochemical research and process development towards a production worthy copper CMP process capable of meeting the stringent specifications of dual damascene integration.In addition, the dual damascene integration scheme introduced copper deposition challenges that brought significant activity in developing another wet chemistry process, electroplating. These two sequential, chemical processes have been shown to have significant interaction that has created significant challenges in process integration.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4859 ◽  
Author(s):  
Mohammad Ostadi ◽  
Kristofer Gunnar Paso ◽  
Sandra Rodriguez-Fabia ◽  
Lars Erik Øi ◽  
Flavio Manenti ◽  
...  

Integrated water electrolysis is a core principle of new process configurations for decarbonized heavy industries. Water electrolysis generates H2 and O2 and involves an exchange of thermal energy. In this manuscript, we investigate specific traditional heavy industrial processes that have previously been performed in nitrogen-rich air environments. We show that the individual process streams may be holistically integrated to establish new decarbonized industrial processes. In new process configurations, CO2 capture is facilitated by avoiding inert gases in reactant streams. The primary energy required to drive electrolysis may be obtained from emerging renewable power sources (wind, solar, etc.) which have enjoyed substantial industrial development and cost reductions over the last decade. The new industrial designs uniquely harmonize the intermittency of renewable energy, allowing chemical energy storage. We show that fully integrated electrolysis promotes the viability of decarbonized industrial processes. Specifically, new process designs uniquely exploit intermittent renewable energy for CO2 conversion, enabling thermal integration, H2 and O2 utilization, and sub-process harmonization for economic feasibility. The new designs are increasingly viable for decarbonizing ferric iron reduction, municipal waste incineration, biomass gasification, fermentation, pulp production, biogas upgrading, and calcination, and are an essential step forward in reducing anthropogenic CO2 emissions.


Sign in / Sign up

Export Citation Format

Share Document