efflux pathway
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 11)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Vol 8 ◽  
Author(s):  
Hong Y. Choi ◽  
Isabelle Ruel ◽  
Shiwon Choi ◽  
Jacques Genest

The capacity of macrophages to dispose of cholesterol deposited in the atherosclerotic plaque depends on their ability to activate cholesterol efflux pathways. To develop athero-protective therapies aimed at promoting macrophage cholesterol efflux, cholesterol metabolism in THP-1 monocyte-derived macrophages has been extensively studied, but the intrinsic sensitivity of monocytes and the lack of a standardized procedure to differentiate THP-1 monocytes into macrophages have made it difficult to utilize THP-1 macrophages in the same or similar degree of differentiation across studies. The variability has resulted in lack of understanding of how the differentiation affects cholesterol metabolism, and here we review and investigate the effects of THP-1 differentiation on cholesterol efflux. The degree of THP-1 differentiation was inversely associated with ATP binding cassette A1 (ABCA1) transporter-mediated cholesterol efflux. The differentiation-associated decrease in ABCA1-mediated cholesterol efflux occurred despite an increase in ABCA1 expression. In contrast, DSC1 expression decreased during the differentiation. DSC1 is a negative regulator of the ABCA1-mediated efflux pathway and a DSC1-targeting agent, docetaxel showed high potency and efficacy in promoting ABCA1-mediated cholesterol efflux in THP-1 macrophages. These data suggest that pharmacological targeting of DSC1 may be more effective than increasing ABCA1 expression in promoting macrophage cholesterol efflux. In summary, the comparison of THP-1 macrophage subtypes in varying degrees of differentiation provided new insights into cholesterol metabolism in macrophages and allowed us to identify a viable target DSC1 for the promotion of cholesterol efflux in differentiated macrophages. Docetaxel and other pharmacological strategies targeting DSC1 may hold significant potential for reducing atherogenic cholesterol deposition.


2021 ◽  
Vol 10 (10) ◽  
pp. 693-703
Author(s):  
Xinwei Wang ◽  
Danbi Wang ◽  
Peng Xia ◽  
Kai Cheng ◽  
Qi Wang ◽  
...  

Aims To evaluate the effect of ultrasound-targeted simvastatin-loaded microbubble destruction (UTMD SV ) for alleviation of the progression of osteoarthritis (OA) in rabbits through modulation of the peroxisome proliferator-activated receptor (PPARγ). Methods In vitro, OA chondrocytes were treated with ultrasound (US), US-targeted microbubble destruction (UTMD), simvastatin (SV), and UTMD SV on alternate days for four weeks. Chondrocytes were also treated with PPARγ inhibitor, PPARγ inhibitor+ UTMD SV , and UTMD SV . The cholesterol efflux rate and triglyceride levels were measured using an assay kit and oil red O staining, respectively. In vivo, the OA rabbits were treated with a single intra-articular injection of UTMD, SV, and UTMD SV every seven days for four weeks. Cartilage histopathology was assessed by safranin-O staining and the Mankin score. Total cholesterol (TC) and high-density lipoprotein-cholesterol (HDL-C) in rabbit knee synovial fluid were detected by enzyme-marker assay. Aggrecan, collagen II, and PPARγ expression levels were analyzed by Western blotting (WB). Results In vitro, UTMD SV significantly increased the cholesterol efflux rate and aggrecan, collagen II, and PPARγ levels in OA chondrocytes; these effects were blocked by the PPARγ inhibitor. In vivo, UTMD SV significantly increased aggrecan, collagen II, PPARγ, and HDL-C levels, while TC levels and Mankin scores were decreased compared with the UTMD, SV, OA, and control groups. Conclusion UTMD SV promotes cartilage extracellular matrix synthesis by modulating the PPARγ-mediated cholesterol efflux pathway in OA rabbits. Cite this article: Bone Joint Res 2021;10(10):693–703.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yavuz Öztürk ◽  
Crysten E. Blaby-Haas ◽  
Noel Daum ◽  
Andreea Andrei ◽  
Juna Rauch ◽  
...  

Copper (Cu) is an essential cofactor required for redox enzymes in all domains of life. Because of its toxicity, tightly controlled mechanisms ensure Cu delivery for cuproenzyme biogenesis and simultaneously protect cells against toxic Cu. Many Gram-negative bacteria contain extracytoplasmic multicopper oxidases (MCOs), which are involved in periplasmic Cu detoxification. MCOs are unique cuproenzymes because their catalytic center contains multiple Cu atoms, which are required for the oxidation of Cu1+ to the less toxic Cu2+. Hence, Cu is both substrate and essential cofactor of MCOs. Here, we investigated the maturation of Rhodobacter capsulatus MCO CutO and its role in periplasmic Cu detoxification. A survey of CutO activity of R. capsulatus mutants with known defects in Cu homeostasis and in the maturation of the cuproprotein cbb3-type cytochrome oxidase (cbb3-Cox) was performed. This revealed that CutO activity is largely independent of the Cu-delivery pathway for cbb3-Cox biogenesis, except for the cupric reductase CcoG, which is required for full CutO activity. The most pronounced decrease of CutO activity was observed with strains lacking the cytoplasmic Cu chaperone CopZ, or the Cu-exporting ATPase CopA, indicating that CutO maturation is linked to the CopZ-CopA mediated Cu-detoxification pathway. Our data demonstrate that CutO is important for cellular Cu resistance under both aerobic and anaerobic growth conditions. CutO is encoded in the cutFOG operon, but only CutF, and not CutG, is essential for CutO activity. No CutO activity is detectable when cutF or its putative Cu-binding motif are mutated, suggesting that the cutF product serves as a Cu-binding component required for active CutO production. Bioinformatic analyses of CutF-like proteins support their widespread roles as putative Cu-binding proteins for several Cu-relay pathways. Our overall findings show that the cytoplasmic CopZ-CopA dependent Cu detoxification pathway contributes to providing Cu to CutO maturation, a process that strictly relies on cutF.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4473
Author(s):  
Lucía Viejo ◽  
Marcos Rubio-Alarcón ◽  
Raquel L. Arribas ◽  
Manuel Moreno-Castro ◽  
Raquel Pérez-Marín ◽  
...  

In excitable cells, mitochondria play a key role in the regulation of the cytosolic Ca2+ levels. A dysregulation of the mitochondrial Ca2+ buffering machinery derives in serious pathologies, where neurodegenerative diseases highlight. Since the mitochondrial Na+/Ca2+ exchanger (NCLX) is the principal efflux pathway of Ca2+ to the cytosol, drugs capable of blocking NCLX have been proposed to act as neuroprotectants in neuronal damage scenarios exacerbated by Ca2+ overload. In our search of optimized NCLX blockers with augmented drug-likeness, we herein describe the synthesis and pharmacological characterization of new benzothiazepines analogues to the first-in-class NCLX blocker CGP37157 and its further derivative ITH12575, synthesized by our research group. As a result, we found two new compounds with an increased neuroprotective activity, neuronal Ca2+ regulatory activity and improved drug-likeness and pharmacokinetic properties, such as clog p or brain permeability, measured by PAMPA experiments.


Author(s):  
Elham Khosrowabadi ◽  
Antti Rivinoja ◽  
Maija Risteli ◽  
Anne Tuomisto ◽  
Tuula Salo ◽  
...  

AbstractProper functioning of each secretory and endocytic compartment relies on its unique pH micro-environment that is known to be dictated by the rates of V-ATPase-mediated H+ pumping and its leakage back to the cytoplasm via an elusive “H+ leak” pathway. Here, we show that this proton leak across Golgi membranes is mediated by the AE2a (SLC4A2a)-mediated bicarbonate-chloride exchange, as it is strictly dependent on bicarbonate import (in exchange for chloride export) and the expression level of the Golgi-localized AE2a anion exchanger. In the acidic Golgi lumen, imported bicarbonate anions and protons then facilitate a common buffering reaction that yields carbon dioxide and water before their egress back to the cytoplasm via diffusion or water channels. The flattened morphology of the Golgi cisternae helps this process, as their high surface-volume ratio is optimal for water and gas exchange. Interestingly, this net acid efflux pathway is often upregulated in cancers and established cancer cell lines, and responsible for their markedly elevated Golgi resting pH and attenuated glycosylation potential. Accordingly, AE2 knockdown in SW-48 colorectal cancer cells was able to restore these two phenomena, and at the same time, reverse their invasive and anchorage-independent growth phenotype. These findings suggest a possibility to return malignant cells to a benign state by restoring Golgi resting pH.


2021 ◽  
Vol 13 ◽  
Author(s):  
Tao Lv ◽  
Bing Zhao ◽  
Qin Hu ◽  
Xiaohua Zhang

The glymphatic system (GS) is a novel defined brain-wide perivascular transit network between cerebrospinal fluid (CSF) and interstitial solutes that facilitates the clearance of brain metabolic wastes. The complicated network of the GS consists of the periarterial CSF influx pathway, astrocytes-mediated convective transport of fluid and solutes supported by AQP4 water channels, and perivenous efflux pathway. Recent researches indicate that the GS dysfunction is associated with various neurological disorders, including traumatic brain injury, hydrocephalus, epilepsy, migraine, and Alzheimer’s disease (AD). Meanwhile, the GS also plays a pivotal role in the pathophysiological process of stroke, including brain edema, blood–brain barrier (BBB) disruption, immune cell infiltration, neuroinflammation, and neuronal apoptosis. In this review, we illustrated the key anatomical structures of the GS, the relationship between the GS and the meningeal lymphatic system, the interaction between the GS and the BBB, and the crosstalk between astrocytes and other GS cellular components. In addition, we contributed to the current knowledge about the role of the GS in the pathology of stroke and the role of AQP4 in stroke. We further discussed the potential use of the GS in early risk assessment, diagnostics, prognostics, and therapeutics of stroke.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 198
Author(s):  
Bailey A. Loving ◽  
Maoping Tang ◽  
Mikaela C. Neal ◽  
Sachi Gorkhali ◽  
Robert Murphy ◽  
...  

Microglia become increasingly dysfunctional with aging and contribute to the onset of neurodegenerative disease (NDs) through defective phagocytosis, attenuated cholesterol efflux, and excessive secretion of pro-inflammatory cytokines. Dysfunctional microglia also accumulate lipid droplets (LDs); however, the mechanism underlying increased LD load is unknown. We have previously shown that microglia lacking lipoprotein lipase (LPL KD) are polarized to a pro-inflammatory state and have impaired lipid uptake and reduced fatty acid oxidation (FAO). Here, we also show that LPL KD microglia show excessive accumulation of LD-like structures. Moreover, LPL KD microglia display a pro-inflammatory lipidomic profile, increased cholesterol ester (CE) content, and reduced cholesterol efflux at baseline. We also show reduced expression of genes within the canonical cholesterol efflux pathway. Importantly, PPAR agonists (rosiglitazone and bezafibrate) rescued the LD-associated phenotype in LPL KD microglia. These data suggest that microglial-LPL is associated with lipid uptake, which may drive PPAR signaling and cholesterol efflux to prevent inflammatory lipid distribution and LD accumulation. Moreover, PPAR agonists can reverse LD accumulation, and therefore may be beneficial in aging and in the treatment of NDs.


2021 ◽  
Author(s):  
Xinwei Wang ◽  
Danbi Wang ◽  
Kai Cheng ◽  
Qi Wang ◽  
Xiaoju Wang ◽  
...  

Abstract Objective: To evaluate ultrasound-targeted simvastatin-loaded microbubble destruction (UTMDSV) attenuation of osteoarthritis (OA) progression in rabbits through modulation of the peroxisome proliferator-activated receptor (PPARγ)-mediated cholesterol efflux pathway.Methods: In vitro, chondrocytes were treated with ultrasound (US), US-targeted microbubble destruction (UTMD), simvastatin (SV) and UTMDsv on alternate days for 4 weeks. Chondrocytes were also treated with PPARγ inhibitor, PPARγ inhibitor+UTMDsv and UTMDsv. The cholesterol efflux rate and triglyceride were measured respectively by assay kit and oil red O staining. In vivo, the OA rabbits were treated with a single intra-articular injection of UTMD, SV and UTMDSV every 7 days for 4 weeks. Cartilage histopathology was assessed by safranin-O staining and the Mankin score. Total cholesterol (TC) and high-density lipoprotein-cholesterol (HDL-C) in rabbit knee synovial fluid were detected by enzyme-marker assay. Aggrecan, collagen II and PPARγ expression levels were analyzed western blotting (WB).Results: OA models exhibited primarily by a loss of aggrecan and collagen II, changes to subchondral bone architecture and cartilage degradation. In vitro, UTMDSV significantly increased the cholesterol efflux rate and aggrecan, collagen II and PPARγ levels in OA chondrocytes; these effects were blocked by the PPARγ inhibitor. In vivo, UTMDSV significantly increased aggrecan, collagen II, PPARγ and HDL-C levels, while TC levels and Mankin scores were decreased compared with the UTMD, SV, OA and control groups (95% CI: 0.069 to 6.671).Conclusion: UTMDSV promotes the expression of aggrecan and collagen II and relieve cartilage degradation by modulating the PPARγ-mediated cholesterol efflux pathway in rabbits.


Author(s):  
Shivani Tendulkar ◽  
Suneel Dodamani

: This review focuses on conventional treatment overview, signaling pathways and various reasons for drug resistance with understanding novel methods that can lead to effective therapies. Ovarian cancer is amongst the most common gynecological and lethal cancers in women from the age of 20-60. The survival rate is limited to 5 years due to diagnosis in subsequent stages with reoccurrence of tumor and resistance of chemotherapeutic. The recent clinical trails use combinatorial treatment of carboplatin and paclitaxel on ovarian cancer after cytoreduction of tumor. Predominantly patients are responsive initially to therapy and later develop metastases due to drug resistance. Chemotherapy also leads to drug resistance causing enormous variations at cellular level. Multifaceted mechanisms like drug resistance are associated with number of genes and signaling pathways that process the proliferation of cells. Reasons for resistance include epithelial-mesenchyme, DNA repair activation, autophagy, drug efflux, pathway activation, and so on. Determining the routes on molecular mechanism that target chemoresistance pathways are necessary for controlling the treatment and understanding efficient drug targets can open light on improve therapeutic outcomes. Most common drug used for ovarian cancer is Cisplatin, which activates various chemoresistance pathways ultimately causing drug resistance. There have been substantial improvements in understanding the mechanisms of cisplatin resistance or chemo sensitizing cisplatin for effective treatment. Using therapies with combination that involve phytochemical or novel drug delivery system involving the phytochemicals would be a novel treatment in cancer. Phytochemicals are plant-derived compounds that exhibit anticancer, anti-oxidative, anti-inflammatory properties that minimalize side effects exerted from chemotherapeutics.


Author(s):  
Christian B. Billesbølle ◽  
Caleigh M. Azumaya ◽  
Rachael C. Kretsch ◽  
Alexander S. Powers ◽  
Shane Gonen ◽  
...  

AbstractThe serum iron level in humans is tightly controlled by the action of the hormone hepcidin on the iron efflux transporter ferroportin. Hepcidin negatively regulates iron absorption and recycling by inducing ferroportin internalization and degradation. Aberrant ferroportin activity can lead to diseases of iron overload, like hemochromatosis, or iron limitation anemias. Here, we determined cryogenic electron microscopy (cryo-EM) structures of ferroportin in lipid nanodiscs, both in the apo state and in complex with cobalt, an iron mimetic, and hepcidin. These structures and accompanying molecular dynamics simulations identify two divalent metal binding sites within the N- and C-domains of ferroportin. Hepcidin binds ferroportin in an outward-open conformation and completely occludes the iron efflux pathway. The carboxy-terminus of hepcidin directly contacts the divalent metal in the FPN C-domain. We further show that hepcidin binding to ferroportin is coupled to iron binding, with an 80-fold increase in hepcidin affinity in the presence of iron. These results suggest a new model for hepcidin regulation of ferroportin, where only iron loaded ferroportin molecules are targeted for degradation. More broadly, our structural and functional insights are likely to enable more targeted manipulation of the hepcidin-ferroportin axis in disorders of iron homeostasis.


Sign in / Sign up

Export Citation Format

Share Document