scholarly journals Alterations at Arg76 of human connexin 46, a residue associated with cataract formation, cause loss of gap junction formation but preserve hemichannel function

2018 ◽  
Vol 315 (5) ◽  
pp. C623-C635
Author(s):  
Charles K. Abrams ◽  
Alejandro Peinado ◽  
Rola Mahmoud ◽  
Matan Bocarsly ◽  
Han Zhang ◽  
...  

The connexins are members of a family of integral membrane proteins that form gap junction channels between apposed cells and/or hemichannels across the plasma membranes. The importance of the arginine at position 76 (Arg76) in the structure and/or function of connexin 46 (Cx46) is highlighted by its conservation across the entire connexin family and the occurrence of pathogenic mutations at this (or the corresponding homologous) residue in a number of human diseases. Two mutations at Arg76 in Cx46 are associated with cataracts in humans, highlighting the importance of this residue. We examined the expression levels and macroscopic and single-channel properties of human Cx46 and compared them with those for two pathogenic mutants, namely R76H and R76G. To gain further insight into the role of charge at this position, we generated two additional nonnaturally occurring mutants, R76K (charge conserving) and R76E (charge inverting). We found that, when expressed exogenously in Neuro2a cells, all four mutants formed membrane hemichannels, inducing membrane permeability at levels comparable to those recorded in cells expressing the wild-type Cx46. In contrast, the number of gap-junction plaques and the magnitude of junctional coupling were reduced by all four mutations. To gain further insight into the role of Arg76 in the function of Cx46, we performed homology modeling of Cx46 and in silico mutagenesis of Arg76 to Gly, His, or Glu. Our studies suggest that the loss of interprotomeric interactions has a significant effect on the extracellular domain conformation and dynamics, thus affecting the hemichannel docking required for formation of cell-cell channels.

1995 ◽  
Vol 6 (12) ◽  
pp. 1707-1719 ◽  
Author(s):  
B R Kwak ◽  
M M Hermans ◽  
H R De Jonge ◽  
S M Lohmann ◽  
H J Jongsma ◽  
...  

Studies on physiological modulation of intercellular communication mediated by protein kinases are often complicated by the fact that cells express multiple gap junction proteins (connexins; Cx). Changes in cell coupling can be masked by simultaneous opposite regulation of the gap junction channel types expressed. We have examined the effects of activators and inhibitors of protein kinase A (PKA), PKC, and PKG on permeability and single channel conductance of gap junction channels composed of Cx45, Cx43, or Cx26 subunits. To allow direct comparison between these Cx, SKHep1 cells, which endogenously express Cx45, were stably transfected with cDNAs coding for Cx43 or Cx26. Under control conditions, the distinct types of gap junction channels could be distinguished on the basis of their permeability and single channel properties. Under various phosphorylating conditions, these channels behaved differently. Whereas agonists/antagonist of PKA did not affect permeability and conductance of all gap junction channels, variable changes were observed under PKC stimulation. Cx45 channels exhibited an additional conductance state, the detection of the smaller conductance states of Cx43 channels was favored, and Cx26 channels were less often observed. In contrast to the other kinases, agonists/antagonist of PKG affected permeability and conductance of Cx43 gap junction channels only. Taken together, these results show that distinct types of gap junction channels are differentially regulated by similar phosphorylating conditions. This differential regulation may be of physiological importance during modulation of cell-to-cell communication of more complex cell systems.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Niels Voigt ◽  
Ange Maguy ◽  
Yung-Hsin Yeh ◽  
Xiao-Yan Qi ◽  
Ursula Ravens ◽  
...  

Background: Although atrial tachycardia (AT) appears to promote agonist-independent constitutively active I K,ACh that increases susceptibility to AF, direct demonstration of dysregulated I K,ACh channel function is lacking. We studied AT effects on single I K,ACh channel activity in dog atria. Methods: I K,ACh channel activity was recorded with cell-attached patch clamp in isolated atrial myocytes of control (CTL) and AT (7 days, 400 min −1 ) dogs. Results : AT prolonged inducible AF duration from 44±22 to 413±167 s; N=9 dogs/gp, P<0.001. In the absence of cholinergic stimulation, single-channel openings with typical I K,ACh conductance and rectification were observed in CTL and AT (Figure ). AT produced prominent agonist-independent I K,ACh activity due to 7-fold increased opening frequency (f o ) and 10-fold increased open probability (P o ) vs CTL (P<0.01 for each), but unaltered open time and single channel conductance. With maximum I K,ACh activation (10 μm carbachol, CCh), f o was 38% lower, open time constant 25% higher, and P o and unitary conductance unchanged for AT vs CTL. The selective Kir3 blocker tertiapin (100 nM) reduced f o and P o by 48% and 51% (P<0.05 each) without altering other channel properties, confirming the identity of I K,ACh. Conclusions : AT produces prominent agonist-independent constitutive single-channel I K,ACh activity, providing a molecular basis for previously-observed AT-enhanced macroscopic I K,ACh , as well as associated AP-shortening and tertiapin-suppressible AF promotion. These results suggest an important role for constitutively active I K,ACh channels in AT-remodeling and support their interest as a potential novel AF-therapy target.


2007 ◽  
Vol 3 (3) ◽  
pp. 199-208 ◽  
Author(s):  
Eliana Scemes ◽  
Sylvia O. Suadicani ◽  
Gerhard Dahl ◽  
David C. Spray

AbstractIn this review, we briefly summarize what is known about the properties of the three families of gap junction proteins, connexins, innexins and pannexins, emphasizing their importance as intercellular channels that provide ionic and metabolic coupling and as non-junctional channels that can function as a paracrine signaling pathway. We discuss that two distinct groups of proteins form gap junctions in deuterostomes (connexins) and protostomes (innexins), and that channels formed of the deuterostome homologues of innexins (pannexins) differ from connexin channels in terms of important structural features and activation properties. These differences indicate that the two families of gap junction proteins serve distinct, complementary functions in deuterostomes. In several tissues, including the CNS, both connexins and pannexins are involved in intercellular communication, but have different roles. Connexins mainly contribute by forming the intercellular gap junction channels, which provide for junctional coupling and define the communication compartments in the CNS. We also provide new data supporting the concept that pannexins form the non-junctional channels that play paracrine roles by releasing ATP and, thus, modulating the range of the intercellular Ca2+-wave transmission between astrocytes in culture.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
José Luis Vega ◽  
Mario Subiabre ◽  
Felipe Figueroa ◽  
Kurt Alex Schalper ◽  
Luis Osorio ◽  
...  

In vertebrates, connexins (Cxs) and pannexins (Panxs) are proteins that form gap junction channels and/or hemichannels located at cell-cell interfaces and cell surface, respectively. Similar channel types are formed by innexins in invertebrate cells. These channels serve as pathways for cellular communication that coordinate diverse physiologic processes. However, it is known that many acquired and inherited diseases deregulate Cx and/or Panx channels, condition that frequently worsens the pathological state of vertebrates. Recent evidences suggest that Cx and/or Panx hemichannels play a relevant role in bacterial and viral infections. Nonetheless, little is known about the role of Cx- and Panx-based channels in parasitic infections of vertebrates. In this review, available data on changes in Cx and gap junction channel changes induced by parasitic infections are summarized. Additionally, we describe recent findings that suggest possible roles of hemichannels in parasitic infections. Finally, the possibility of new therapeutic designs based on hemichannel blokers is presented.


2002 ◽  
Vol 80 (2) ◽  
pp. 136-141 ◽  
Author(s):  
Christian CG Naus

Gap junctional intercellular communication has been implicated in growth control and differentiation. The mechanisms by which connexins, the gap junction proteins, act as tumor suppressors are unclear. In this review, several different mechanisms are considered. Since transformation results in a loss of the differentiated state, one mechanism by which gap junctions may control tumour progression is to promote or enhance differentiation. Processes of differentiation and growth control are mediated at the genetic level. Thus, an alternative or complimentary mechanism of tumour suppression could involve the regulation of gene expression by connexins and gap junctional coupling. Finally, gap junction channels form a conduit between cells for the exchange of ions, second messengers, and small metabolites. It is clear that the sharing of these molecules can be rather selective and may be involved in growth control processes. In this review, examples will be discussed that provide evidence for each of these mechanisms. Taken together, these findings point to a variety of mechanims by which connexins and the gap junction channels that they form may control tumour progression.Key words: gap junctions, connexin, cancer.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
John R Jimah ◽  
Nichole D Salinas ◽  
Monica Sala-Rabanal ◽  
Nathaniel G Jones ◽  
L David Sibley ◽  
...  

Apicomplexan parasites contain a conserved protein CelTOS that, in malaria parasites, is essential for traversal of cells within the mammalian host and arthropod vector. However, the molecular role of CelTOS is unknown because it lacks sequence similarity to proteins of known function. Here, we determined the crystal structure of CelTOS and discovered CelTOS resembles proteins that bind to and disrupt membranes. In contrast to known membrane disruptors, CelTOS has a distinct architecture, specifically binds phosphatidic acid commonly present within the inner leaflet of plasma membranes, and potently disrupts liposomes composed of phosphatidic acid by forming pores. Microinjection of CelTOS into cells resulted in observable membrane damage. Therefore, CelTOS is unique as it achieves nearly universal inner leaflet cellular activity to enable the exit of parasites from cells during traversal. By providing novel molecular insight into cell traversal by apicomplexan parasites, our work facilitates the design of therapeutics against global pathogens.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1374
Author(s):  
Yumeng Quan ◽  
Yu Du ◽  
Yuxin Tong ◽  
Sumin Gu ◽  
Jean X. Jiang

The lens is continuously exposed to oxidative stress insults, such as ultraviolet radiation and other oxidative factors, during the aging process. The lens possesses powerful oxidative stress defense systems to maintain its redox homeostasis, one of which employs connexin channels. Connexins are a family of proteins that form: (1) Hemichannels that mediate the communication between the intracellular and extracellular environments, and (2) gap junction channels that mediate cell-cell communication between adjacent cells. The avascular lens transports nutrition and metabolites through an extensive network of connexin channels, which allows the passage of small molecules, including antioxidants and oxidized wastes. Oxidative stress-induced post-translational modifications of connexins, in turn, regulates gap junction and hemichannel permeability. Recent evidence suggests that dysfunction of connexins gap junction channels and hemichannels may induce cataract formation through impaired redox homeostasis. Here, we review the recent advances in the knowledge of connexin channels in lens redox homeostasis and their response to cataract-related oxidative stress by discussing two major aspects: (1) The role of lens connexins and channels in oxidative stress and cataractogenesis, and (2) the impact and underlying mechanism of oxidative stress in regulating connexin channels.


1989 ◽  
Vol 93 (3) ◽  
pp. 509-513
Author(s):  
W.T. Gruijters

New immunolocalization data put the role of the lens MP26 (MIP) protein in a new perspective. During maturation of lens fibre cells, MIP is found to associate specifically with two structures, gap junctions and cell interlocking processes (known as ball and socket domains). It is significant that the zone in which these associations are most striking is discrete, coinciding with the zone of rapidly enlarging junctional plaques and newly forming ball and socket domains. Observation of domain-specific interactions of MIP with forming gap junctions and ball and socket domains suggests that MIP may be involved in the formation of close membrane appositions. Furthermore, previous ambiguities in the literature over the presence of MIP in gap junctions are clarified by the knowledge that, in situ, MIP associates strongly with gap junctions for only a brief period (with less than about 5% of all lens gap junctions at any one time) during the assembly of junctional plaques.


Physiology ◽  
2002 ◽  
Vol 17 (1) ◽  
pp. 32-37 ◽  
Author(s):  
E. A. Accili ◽  
C. Proenza ◽  
M. Baruscotti ◽  
D. DiFrancesco

The “funny” (pacemaker) current has unusual characteristics, including activation on hyperpolarization, permeability to K+ and Na+, modulation by internal cAMP, and a tiny, single-channel conductance. In cardiac cells and neurons, pacemaker channels control repetitive activity and excitability. The recent cloning of HCN subunits provides new insight into the molecular basis for the funny channel properties.


Sign in / Sign up

Export Citation Format

Share Document