scholarly journals Hypoxia. Cross talk between oxygen sensing and the cell cycle machinery

2011 ◽  
Vol 301 (3) ◽  
pp. C550-C552 ◽  
Author(s):  
Gregg L. Semenza

A fundamental physiological property of mammalian cells is the regulation of proliferation according to O2 availability. Progression through the cell cycle is inhibited under hypoxic conditions in many, but not all, cell types, and this G1 arrest is dependent on hypoxia-inducible factor (HIF) 1α. Components of the hexameric MCM helicase, which binds to replication origins before the onset of DNA synthesis, are present in large excess in mammalian cells relative to origins, suggesting that they may have additional functions. Screens for HIF-1α interacting proteins revealed that MCM7 binds to the amino-terminal PER-SIM-ARNT (PAS) domain of HIF-1α and stimulates prolyl hydroxylation-dependent ubiquitination and degradation of HIF-1α, whereas MCM3 binds to the carboxyl terminus of HIF-1α and enhances asparaginyl hydroxylation-dependent inhibition of HIF-1α transactivation domain function. Thus MCM proteins inhibit HIF activity via two distinct O2-dependent mechanisms. Under prolonged hypoxic conditions, MCM mRNA expression is inhibited in a HIF-1α-dependent manner. Thus HIF and MCM proteins act in a mutually antagonistic manner, providing a novel molecular mechanism for homeostatic regulation of cell proliferation based on the relative levels of these proteins.

1997 ◽  
Vol 17 (12) ◽  
pp. 7268-7282 ◽  
Author(s):  
R Verona ◽  
K Moberg ◽  
S Estes ◽  
M Starz ◽  
J P Vernon ◽  
...  

E2F directs the cell cycle-dependent expression of genes that induce or regulate the cell division process. In mammalian cells, this transcriptional activity arises from the combined properties of multiple E2F-DP heterodimers. In this study, we show that the transcriptional potential of individual E2F species is dependent upon their nuclear localization. This is a constitutive property of E2F-1, -2, and -3, whereas the nuclear localization of E2F-4 is dependent upon its association with other nuclear factors. We previously showed that E2F-4 accounts for the majority of endogenous E2F species. We now show that the subcellular localization of E2F-4 is regulated in a cell cycle-dependent manner that results in the differential compartmentalization of the various E2F complexes. Consequently, in cycling cells, the majority of the p107-E2F, p130-E2F, and free E2F complexes remain in the cytoplasm. In contrast, almost all of the nuclear E2F activity is generated by pRB-E2F. This complex is present at high levels during G1 but disappears once the cells have passed the restriction point. Surprisingly, dissociation of this complex causes little increase in the levels of nuclear free E2F activity. This observation suggests that the repressive properties of the pRB-E2F complex play a critical role in establishing the temporal regulation of E2F-responsive genes. How the differential subcellular localization of pRB, p107, and p130 contributes to their different biological properties is also discussed.


2010 ◽  
Vol 191 (4) ◽  
pp. 809-825 ◽  
Author(s):  
Stacey E. Wirt ◽  
Adam S. Adler ◽  
Véronique Gebala ◽  
James M. Weimann ◽  
Bethany E. Schaffer ◽  
...  

The ability of progenitor cells to exit the cell cycle is essential for proper embryonic development and homeostasis, but the mechanisms governing cell cycle exit are still not fully understood. Here, we tested the requirement for the retinoblastoma (Rb) protein and its family members p107 and p130 in G0/G1 arrest and differentiation in mammalian cells. We found that Rb family triple knockout (TKO) mouse embryos survive until days 9–11 of gestation. Strikingly, some TKO cells, including in epithelial and neural lineages, are able to exit the cell cycle in G0/G1 and differentiate in teratomas and in culture. This ability of TKO cells to arrest in G0/G1 is associated with the repression of key E2F target genes. Thus, G1 arrest is not always dependent on Rb family members, which illustrates the robustness of cell cycle regulatory networks during differentiation and allows for the identification of candidate pathways to inhibit the expansion of cancer cells with mutations in the Rb pathway.


1997 ◽  
Vol 17 (3) ◽  
pp. 1425-1433 ◽  
Author(s):  
S E Lee ◽  
R A Mitchell ◽  
A Cheng ◽  
E A Hendrickson

Mice homozygous for the scid (severe combined immune deficiency) mutation are defective in the repair of DNA double-strand breaks (DSBs) and are consequently very X-ray sensitive and defective in the lymphoid V(D)J recombination process. Recently, a strong candidate for the scid gene has been identified as the catalytic subunit of the DNA-dependent protein kinase (DNA-PK) complex. Here, we show that the activity of the DNA-PK complex is regulated in a cell cycle-dependent manner, with peaks of activity found at the G1/early S phase and again at the G2 phase in wild-type cells. Interestingly, only the deficit of the G1/early S phase DNA-PK activity correlated with an increased hypersensitivity to X-irradiation and a DNA DSB repair deficit in synchronized scid pre-B cells. Finally, we demonstrate that the DNA-PK activity found at the G2 phase may be required for exit from a DNA damage-induced G2 checkpoint arrest. These observations suggest the presence of two pathways (DNA-PK-dependent and -independent) of illegitimate mammalian DNA DSB repair and two distinct roles (DNA DSB repair and G2 checkpoint traversal) for DNA-PK in the cellular response to ionizing radiation.


2009 ◽  
Vol 424 (1) ◽  
pp. 143-151 ◽  
Author(s):  
Tetsuhiro Tanaka ◽  
Michael Wiesener ◽  
Wanja Bernhardt ◽  
Kai-Uwe Eckardt ◽  
Christina Warnecke

HIF (hypoxia-inducible factor)-3α is the third member of the HIF transcription factor family. Whereas HIF-1α and -2α play critical roles in the cellular and systemic adaptation to hypoxia, little is known about the regulation and function of HIF-3α. At least five different splice variants may be expressed from the human HIF-3α locus that are suggested to exert primarily negative regulatory effects on hypoxic gene induction. In the present paper, we report that hypoxia induces the human HIF-3α gene at the transcriptional level in a HIF-1-dependent manner. HIF-3α2 and HIF-3α4 transcripts, the HIF-3α splice variants expressed in Caki-1 renal carcinoma cells, rapidly increased after exposure to hypoxia or chemical hypoxia mimetics. siRNA (small interfering RNA)-mediated HIF-α knockdown demonstrated that HIF-3α is a specific target gene of HIF-1α, but is not affected by HIF-2α knockdown. In contrast with HIF-1α and HIF-2α, HIF-3α is not regulated at the level of protein stability. HIF-3α protein could be detected under normoxia in the cytoplasm and nuclei, but increased under hypoxic conditions. Promoter analyses and chromatin immunoprecipitation experiments localized a functional hypoxia-responsive element 5′ to the transcriptional start of HIF-3α2. siRNA-mediated knockdown of HIF-3α increased transactivation of a HIF-driven reporter construct and mRNA expression of lysyl oxidase. Immunohistochemistry revealed an overlap of HIF-1α-positive and HIF-3α-positive areas in human renal cell carcinomas. These findings shed light on a novel aspect of HIF-3α as a HIF-1 target gene and point to a possible role as a modulator of hypoxic gene induction.


2003 ◽  
Vol 31 (3) ◽  
pp. 510-515 ◽  
Author(s):  
K.S. Hewitson ◽  
L.A. McNeill ◽  
J.M. Elkins ◽  
C.J. Schofield

Sensing of ambient dioxygen levels and appropriate feedback mechanisms are essential processes for all multicellular organisms. In animals, moderate hypoxia causes an increase in the transcription levels of specific genes, including those encoding vascular endothelial growth factor and erythropoietin. The hypoxic response is mediated by hypoxia-inducible factor (HIF), an αβ heterodimeric transcription factor in which both the HIF subunits are members of the basic helix–loop–helix PAS (PER-ARNT-SIM) domain family. Under hypoxic conditions, levels of HIFα rise, allowing dimerization with HIFβ and initiating transcriptional activation. Two types of dioxygen-dependent modification to HIFα have been identified, both of which inhibit the transcriptional response. Firstly, HIFα undergoes trans-4-hydroxylation at two conserved proline residues that enable its recognition by the von Hippel-Lindau tumour-suppressor protein. Subsequent ubiquitinylation, mediated by an ubiquitin ligase complex, targets HIFα for degradation. Secondly, hydroxylation of an asparagine residue in the C-terminal transactivation domain of HIFα directly prevents its interaction with the co-activator p300. Hydroxylation of HIFα is catalysed by enzymes of the iron(II)- and 2-oxoglutarate-dependent dioxygenase family. In humans, three prolyl hydroxylase isoenzymes (PHD1–3) and an asparagine hydroxylase [factor inhibiting HIF (FIH)] have been identified. The role of 2-oxoglutarate oxygenases in the hypoxic and other signalling pathways is discussed.


Author(s):  
Jolanta Dzik

The bacteria Legionella, being able to infect both macrophages and protozoans, reduce oxidative phosphorylation and induce glycolysis, which allows pathogens to grow and replicate in these cells. In amoeba-like inflammatory macrophages (M1), the phagocytizing cells of the primary immune defense, an increase in the rate of glycolysis is followed by a decrease of oxidative phosphorylation. The opposite takes place in anti-inflammatory macrophages (M2). They change from glycolysis to oxidative metabolism when AMP-dependent kinase (AMPK) is activated by a high ratio of AMP/ATP. Stimulation of macrophages with anti-inflammatory cytokines causes activation of AMPK. Infection of macrophages with the parasitic flagellate Leishmania infantum induces a switch from an initial glycolytic phase to oxidative phase with the essential role of AMPK in this change. Activated AMPK induces catabolic pathways effectively producing ATP as well as processes requiring the energy supply. AMPK regulates the migration of cells and enhances the phagocytic activity of macrophages. In macrophages, bacterial products activate TLRs and NF-κB signaling, causing an increase of transcription of hypoxia-induced factor HIF-1α (a subunit of HIF-1). This brings about induction of the enzyme and transporter expression essential for glycolysis and the pentose phosphate pathway to proceed and makes biosynthetic processes and ROS production in macrophages possible. Hypoxia augments macrophage phagocytosis in a HIF‐1α‐dependent manner. Multicellular parasites experience changes in the availability of oxygen in their life cycle. In the nematode Ascaris suum, HIF participates in the pre-adaptation to hypoxic conditions after infection of their hosts. Also, the freshwater and marine invertebrates meet changes of oxygen concentrations. In the anaerobic branch of the respiratory chain of these invertebrates, fumarate serves as the terminal electron acceptor that is reduced to succinate in complex II of the ETC. In mammalian cells, accumulation of succinate under hypoxic conditions suggests that the mammalian complex II may reduce fumarate to succinate, too. The data reviewed here show that the ability to shift the cell metabolism towards glycolysis observed in activated macrophages can be traced back in evolution to metabolic changes characterizing protozoans infected with bacteria. Anabolic needs of multiplying bacteria direct host metabolism to glycolysis that produces, aside from ATP, precursors of the amino acids used by the pathogen for its protein synthesis. M1-activated mammalian macrophages behave in the same way. Regulation of metabolism in M1 and M2 macrophages is further enhanced by HIF-1 and AMPK, respectively. These archaic functions of AMPK and HIF, important also to control phagocytosis and cell migration were extended to embryonic development in multicellular organisms.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3838-3838
Author(s):  
Jinsong Hu ◽  
Damian R Handisides ◽  
Els Van Valckenborgh ◽  
Hendrik De Raeve ◽  
Eline Menu ◽  
...  

Abstract Abstract 3838 Poster Board III-774 Hypoxia is known to be linked to increased metastatic potential and a treatment-resistant phenotype leading to rapid progression and poor prognosis in solid tumors. We confirmed previous data[1] on hypoxia in human multiple myeloma (MM) in the 5T33MM syngeneic murine model of MM by using H&E staining and Hypoxyprobe (Pimonidazole) staining on consecutive serial sections from both naive mice and 5T33MMvv diseased mice. We observed a physiological hypoxic situation in MM diseased bone marrow. Given the contribution of hypoxia to tumor progression and drug resistance, a number of hypoxia-targeted therapeutics are under development. TH-302 is a new hypoxia-activated prodrug (HAP) that is currently being evaluated in the clinical trials as monotherapy and in combination with standard chemotherapy regimens for the treatment of solid tumors. The aims of the current study are (1) to demonstrate the effects of TH302 on MM cells in hypoxic conditions, focusing on apoptosis and cell cycle and associated signaling pathways and (2) to evaluate potential therapeutic effects when used in an experimental mouse MM model. We evaluated the effects of TH-302 in vitro on the murine 5T33MMvt cell line and the human LP-1, MMS-1, RPMI-8226, Karpas MM cell lines. Flow cytometry analysis revealed that TH-302 (0.5-50μM) can induce significant Go/G1 cell cycle phase arrest and apoptosis in hypoxic conditions (both 1% and 0% O2) in a concentration dependent manner, in contrast to normoxic conditions (20% O2) (p<0.001). Western blot confirmed that treatment with TH-302 in hypoxic conditions down-regulates cyclin D1/2/3, CDK4/6 and pRb expressions, but CDK2 expression was not disturbed. Furthermore, treatment with TH-302 in hypoxic conditions down-regulates the anti-apoptotic proteins BCL-2 and BCL-xL, as well as up-regulates the expression of three proapoptotic proteins: cleaved caspase-3, 9 and PARP. The expression pattern of Bax was however not influenced. The expression of p21 and p27 decreased in hypoxic condition after treatment with TH-302. Further studies conducted in the 5T33MMvv mouse model demonstrated that animals treated prophylactically with TH-302 (12.5 mg/kg, 25 mg/kg and 50 mg/kg, i.p.) for 3 weeks from day 1 after tumor inoculation showed decreased serum paraprotein (12.5 mg/kg, 32% decrease, p<0.05; 25 mg/kg, 77% decrease, p<0.001; 50 mg/kg, 54% decrease, p<0.001), compared to vehicle-treated 5T33MMvv mice (n=10). The frequency of apoptotic multiple myeloma cells in bone marrow sections was also significantly increased (12.5 mg/kg, 2.5 fold, p<0.05; 25mg/kg, 2.1 fold, p<0.05; 50mg/kg, 3.1 fold, p<0.01). Treatment with TH-302 resulted in no adverse events, any observable detriment to the mice or weight loss (p>0.05). In conclusion, these results show that hypoxia-activated treatment with TH-302 activates apoptosis and induces cell cycle arrest in MM cells, under hypoxic conditions, both in vitro and in vivo and therefore represents a promising therapeutic approach for multiple myeloma. Reference [1] Simona Colla, Paola Storti, Gaetano Donofrio, et al. Hypoxia and Hypoxia Inducible Factor (HIF)-1α in Multiple Myeloma: Effect on the Pro-Angiogenic Signature of Myeloma Cells and the Bone Marrow Microenvironment, 50th ASH annual meeting, http://ash.confex.com/ash/2008/webprogram/Paper13156.html Disclosures: Handisides: Treshold Pharmaceuticals: Employment. Liu:Treshold Pharmaceuticals: Employment. Sun:Treshold Pharmaceuticals: Employment. Hart:Treshold Pharmaceuticals: Employment. Vanderkerken:Treshold Pharmaceuticals: Research Funding.


2000 ◽  
Vol 20 (6) ◽  
pp. 2004-2013 ◽  
Author(s):  
Annika E. Wallberg ◽  
Kristen E. Neely ◽  
Ahmed H. Hassan ◽  
Jan-Åke Gustafsson ◽  
Jerry L. Workman ◽  
...  

ABSTRACT The SWI-SNF complex has been shown to alter nucleosome conformation in an ATP-dependent manner, leading to increased accessibility of nucleosomal DNA to transcription factors. In this study, we show that the SWI-SNF complex can potentiate the activity of the glucocorticoid receptor (GR) through the N-terminal transactivation domain, τ1, in both yeast and mammalian cells. GR-τ1 can directly interact with purified SWI-SNF complex, and mutations in τ1 that affect the transactivation activity in vivo also directly affect τ1 interaction with SWI-SNF. Furthermore, the SWI-SNF complex can stimulate τ1-driven transcription from chromatin templates in vitro. Taken together, these results support a model in which the GR can directly recruit the SWI-SNF complex to target promoters during glucocorticoid-dependent gene activation. We also provide evidence that the SWI-SNF and SAGA complexes represent independent pathways of τ1-mediated activation but play overlapping roles that are able to compensate for one another under some conditions.


Blood ◽  
2008 ◽  
Vol 111 (6) ◽  
pp. 3131-3136 ◽  
Author(s):  
Dong Hoon Shin ◽  
Yang-Sook Chun ◽  
Dong Soon Lee ◽  
L. Eric Huang ◽  
Jong-Wan Park

Abstract Bortezomib (PS-341), a proteasome inhibitor, has been examined clinically for the treatment of multiple myeloma and several solid tumors. Bortezomib directly induces tumor cell death and has also been reported to inhibit tumor adaptation to hypoxia by functionally inhibiting hypoxia-inducible factor-1α (HIF-1α). However, the mechanism underlying HIF-1 inhibition by bortezomib remains obscure. In the present study, we demonstrated that bortezomib attenuated the hypoxic induction of erythropoietin and vascular endothelial growth factor at subnanomolar concentrations in multiple myeloma and liver cancer cell lines, regardless of cytotoxic concentrations of bortezomib. Bortezomib repressed HIF-1α activity by inhibiting the recruitment of p300 coactivator. Specifically, bortezomib targeted HIF-1α C-terminal transactivation domain (CAD) but not the CAD lacking Asn803, which is a hydroxylation site by the factor inhibiting HIF-1 (FIH). Accordingly, this effect of bortezomib on CAD was augmented by FIH expression and abolished by FIH knock-down. Furthermore, bortezomib stimulated the interaction between CAD and FIH under hypoxic conditions, and FIH inhibition reversed the suppressions of erythropoietin and vascular endothelial growth factor by bortezomib. We propose that the mechanism underlying the inhibitory effects of bortezomib on tumor angiogenesis and hypoxic adaptation involves the repression of HIF-1α transcriptional activity by reinforcing the FIH-mediated inhibition of p300 recruitment.


Sign in / Sign up

Export Citation Format

Share Document