Cell-permeable peptide-based disruption of endogenous PKA-AKAP complexes: a tool for studying the molecular roles of AKAP-mediated PKA subcellular anchoring

2009 ◽  
Vol 296 (2) ◽  
pp. C306-C316 ◽  
Author(s):  
Omar M. Faruque ◽  
Dung Le-Nguyen ◽  
Anne-Dominique Lajoix ◽  
Eric Vives ◽  
Pierre Petit ◽  
...  

Stimulation of numerous G protein-coupled receptors leads to the elevation of intracellular concentrations of cAMP, which subsequently activates the PKA pathway. Specificity of the PKA signaling module is determined by a sophisticated subcellular targeting network that directs the spatiotemporal activation of the kinase. This specific compartmentalization mechanism occurs through high-affinity interactions of PKA with A-kinase anchoring proteins (AKAPs), the role of which is to target the kinase to discrete subcellular microdomains. Recently, a peptide designated “AKAPis” has been proposed to competitively inhibit PKA-AKAP interactions in vitro. We therefore sought to characterize a cell-permeable construct of the AKAPis inhibitor and use it as a tool to characterize the impact of PKA compartmentalization by AKAPs. Using insulin-secreting pancreatic β-cells (INS-1 cells), we showed that TAT-AKAPis (at a micromolar range) dose dependently disrupted a significant fraction of endogenous PKA-AKAP interactions. Immunoflurescent analysis also indicated that TAT-AKAPis significantly affected PKA subcellular localization. Furthermore, TAT-AKAPis markedly attenuated glucagon-induced phosphorylations of p44/p42 MAPKs and cAMP response element binding protein, which are downstream effectors of PKA. In parallel, TAT-AKAPis dose dependently inhibited the glucagon-induced potentiation of insulin release. Therefore, AKAP-mediated subcellular compartmentalization of PKA represents a key mechanism for PKA-dependent phosphorylation events and potentiation of insulin secretion in intact pancreatic β-cells. More interestingly, our data highlight the effectiveness of the cell-permeable peptide-mediated approach to monitoring in cellulo PKA-AKAP interactions and delineating PKA-dependent phosphorylation events underlying specific cellular responses.

Endocrinology ◽  
2016 ◽  
Vol 157 (6) ◽  
pp. 2243-2258 ◽  
Author(s):  
Annalisa Natalicchio ◽  
Giuseppina Biondi ◽  
Nicola Marrano ◽  
Rossella Labarbuta ◽  
Federica Tortosa ◽  
...  

The effects of prolonged exposure of pancreatic β-cells to high saturated fatty acids on glucagon-like peptide-1 (GLP-1) action were investigated. Murine islets, human pancreatic 1.1B4 cells, and rat INS-1E cells were exposed to palmitate for 24 hours. mRNA and protein expression/phosphorylation were measured by real-time RT-PCR and immunoblotting, respectively. Specific short interfering RNAs were used to knockdown expression of the GLP-1 receptor (Glp1r) and Srebf1. Insulin release was assessed with a specific ELISA. Exposure of murine islets, as well as of human and INS-1E β-cells, to palmitate reduced the ability of exendin-4 to augment insulin mRNA levels, protein content, and release. In addition, palmitate blocked exendin-4-stimulated cAMP-response element-binding protein and v-akt murine thymoma viral oncogene homolog phosphorylation, whereas phosphorylation of MAPK-ERK kinase-1/2 and ERK-1/2 was not altered. Similarly, RNA interference-mediated suppression of Glp1r expression prevented exendin-4-induced cAMP-response element-binding protein and v-akt murine thymoma viral oncogene homolog phosphorylation, but did not impair exendin-4 stimulation of MAPK-ERK kinase-1/2 and ERK-1/2. Both islets from mice fed a high fat diet and human and INS-1E β-cells exposed to palmitate showed reduced GLP-1 receptor and pancreatic duodenal homeobox-1 (PDX-1) and increased sterol regulatory element-binding protein (SREBP-1C) mRNA and protein levels. Furthermore, suppression of SREBP-1C protein expression prevented the reduction of PDX-1 and GLP-1 receptor levels and restored exendin-4 signaling and action. Finally, treatment of INS-1E cells with metformin for 24 h resulted in inhibition of SREBP-1C expression, increased PDX-1 and GLP-1 receptor levels, consequently, enhancement of exendin-4-induced insulin release. Palmitate impairs exendin-4 effects on β-cells by reducing PDX-1 and GLP-1 receptor expression and signaling in a SREBP-1C-dependent manner. Metformin counteracts the impairment of GLP-1 receptor signaling induced by palmitate.


2003 ◽  
Vol 278 (25) ◽  
pp. 23055-23065 ◽  
Author(s):  
Purevsuren Jambal ◽  
Sara Masterson ◽  
Albina Nesterova ◽  
Ron Bouchard ◽  
Barbara Bergman ◽  
...  

2012 ◽  
Vol 442 (3) ◽  
pp. 495-505 ◽  
Author(s):  
Gráinne Barkess ◽  
Yuri Postnikov ◽  
Chrisanne D. Campos ◽  
Shivam Mishra ◽  
Gokula Mohan ◽  
...  

HMGNs are nucleosome-binding proteins that alter the pattern of histone modifications and modulate the binding of linker histones to chromatin. The HMGN3 family member exists as two splice forms, HMGN3a which is full-length and HMGN3b which lacks the C-terminal RD (regulatory domain). In the present study, we have used the Glyt1 (glycine transporter 1) gene as a model system to investigate where HMGN proteins are bound across the locus in vivo, and to study how the two HMGN3 splice variants affect histone modifications and gene expression. We demonstrate that HMGN1, HMGN2, HMGN3a and HMGN3b are bound across the Glyt1 gene locus and surrounding regions, and are not enriched more highly at the promoter or putative enhancer. We conclude that the peaks of H3K4me3 (trimethylated Lys4 of histone H3) and H3K9ac (acetylated Lys9 of histone H3) at the active Glyt1a promoter do not play a major role in recruiting HMGN proteins. HMGN3a/b binding leads to increased H3K14 (Lys14 of histone H3) acetylation and stimulates Glyt1a expression, but does not alter the levels of H3K4me3 or H3K9ac enrichment. Acetylation assays show that HMGN3a stimulates the ability of PCAF [p300/CREB (cAMP-response-element-binding protein)-binding protein-associated factor] to acetylate nucleosomal H3 in vitro, whereas HMGN3b does not. We propose a model where HMGN3a/b-stimulated H3K14 acetylation across the bodies of large genes such as Glyt1 can lead to more efficient transcription elongation and increased mRNA production.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 128
Author(s):  
Yaser Albadr ◽  
Andrew Crowe ◽  
Rima Caccetta

The prevalence of type 2 diabetes mellitus is rising globally and this disease is proposed to be the next pandemic after COVID-19. Although the cause of type 2 diabetes mellitus is unknown, it is believed to involve a complex array of genetic defects that affect metabolic pathways which eventually lead to hyperglycaemia. This hyperglycaemia arises from an inability of the insulin-sensitive cells to sufficiently respond to the secreted insulin, which eventually results in the inadequate secretion of insulin from pancreatic β-cells. Several treatments, utilising a variety of mechanisms, are available for type 2 diabetes mellitus. However, more medications are needed to assist with the optimal management of the different stages of the disease in patients of varying ages with the diverse combinations of other medications co-administered. Throughout modern history, some lead constituents from ancient medicinal plants have been investigated extensively and helped in developing synthetic antidiabetic drugs, such as metformin. Teucrium polium L. (Tp) is a herb that has a folk reputation for its antidiabetic potential. Previous studies indicate that Tp extracts significantly decrease blood glucose levels r and induce insulin secretion from pancreatic β-cells in vitro. Nonetheless, the constituent/s responsible for this action have not yet been elucidated. The effects appear to be, at least in part, attributable to the presence of selected flavonoids (apigenin, quercetin, and rutin). This review aims to examine the reported glucose-lowering effect of the herb, with a keen focus on insulin secretion, specifically related to type 2 diabetes mellitus. An analysis of the contribution of the key constituent flavonoids of Tp extracts will also be discussed.


2019 ◽  
Vol 3 (12) ◽  
pp. 2326-2340 ◽  
Author(s):  
Luce Perie ◽  
Narendra Verma ◽  
Lingyan Xu ◽  
Xinran Ma ◽  
Elisabetta Mueller

Abstract Zinc finger factors are implicated in a variety of cellular processes, including adipose tissue differentiation and thermogenesis. We have previously demonstrated that zinc finger protein 638 (ZNF638) is a transcriptional coactivator acting as an early regulator of adipogenesis in vitro. In this study, we show, to our knowledge for the first time, that, in vivo, ZNF638 abounds selectively in mature brown and subcutaneous fat tissues and in fully differentiated thermogenic adipocytes. Furthermore, gene expression studies revealed that ZNF638 is upregulated by cAMP modulators in vitro and by cold exposure and by pharmacological stimulation of β-adrenergic signaling in vivo. In silico analysis of the upstream regulatory region of the ZNF638 gene identified two putative cAMP response elements within 500 bp of the ZNF638 transcription start site. Detailed molecular analysis involving EMSA and chromatin immunoprecipitation assays demonstrated that cAMP response element binding protein (CREB) binds to these cAMP response element regions of the ZNF638 promoter, and functional studies revealed that CREB is necessary and sufficient to regulate the levels of ZNF638 transcripts. Taken together, these results demonstrate that ZNF638 is selectively expressed in mature thermogenic adipocytes and tissues and that its induction in response to classic stimuli that promote heat generation is mediated via CREB signaling, pointing to a possible novel role of ZNF638 in brown and beige fat tissues.


2019 ◽  
Vol 9 ◽  
Author(s):  
Rashmi Rajappa ◽  
Dornadula Sireesh ◽  
Magesh B. Salai ◽  
Kunka M. Ramkumar ◽  
Suryanarayanan Sarvajayakesavulu ◽  
...  

2016 ◽  
Vol 258 ◽  
pp. S158
Author(s):  
B. Yesildag ◽  
A. Neelakandhan ◽  
S. Messner ◽  
W. Moritz

2020 ◽  
Vol 21 (13) ◽  
pp. 4668
Author(s):  
Rebecca Scheuer ◽  
Stephan Ernst Philipp ◽  
Alexander Becker ◽  
Lisa Nalbach ◽  
Emmanuel Ampofo ◽  
...  

The regulation of insulin biosynthesis and secretion in pancreatic β-cells is essential for glucose homeostasis in humans. Previous findings point to the highly conserved, ubiquitously expressed serine/threonine kinase CK2 as having a negative regulatory impact on this regulation. In the cell culture model of rat pancreatic β-cells INS-1, insulin secretion is enhanced after CK2 inhibition. This enhancement is preceded by a rise in the cytosolic Ca2+ concentration. Here, we identified the serine residues S2362 and S2364 of the voltage-dependent calcium channel CaV2.1 as targets of CK2 phosphorylation. Furthermore, co-immunoprecipitation experiments revealed that CaV2.1 binds to CK2 in vitro and in vivo. CaV2.1 knockdown experiments showed that the increase in the intracellular Ca2+ concentration, followed by an enhanced insulin secretion upon CK2 inhibition, is due to a Ca2+ influx through CaV2.1 channels. In summary, our results point to a modulating role of CK2 in the CaV2.1-mediated exocytosis of insulin.


Sign in / Sign up

Export Citation Format

Share Document