Age-dependent regulation of rat intestinal type IIb sodium-phosphate cotransporter by 1,25-(OH)2 vitamin D3

2002 ◽  
Vol 282 (3) ◽  
pp. C487-C493 ◽  
Author(s):  
Hua Xu ◽  
Liqun Bai ◽  
James F. Collins ◽  
Fayez K. Ghishan

The current studies were designed to characterize type IIb sodium-inorganic phosphate (Pi) cotransporter (NaPi-IIb) expression and to assess the effect of 1,25-(OH)2 vitamin D3 on NaPi-IIb gene expression during rat ontogeny. Sodium-dependent Pi absorption by intestinal brush-border membrane vesicles (BBMVs) decreased with age, and NaPi-IIb gene expression also decreased proportionally with age. 1,25-(OH)2 vitamin D3 treatment increased intestinal BBMV Pi absorption by ∼2.5-fold in suckling rats and by ∼2.1-fold in adult rats. 1,25-(OH)2vitamin D3 treatment also increased NaPi-IIb mRNA abundance by ∼2-fold in 14-day-old rats but had no effect on mRNA expression in adults. Furthermore, in rat intestinal epithelial (RIE) cells, 1,25-(OH)2 vitamin D3 increased NaPi-IIb mRNA abundance, an effect that was abolished by actinomycin D. Additionally, human NaPi-IIb gene promoter activity in transiently transfected RIE cells showed ∼1.6-fold increase after 1,25-(OH)2 vitamin D3 treatment. In conclusion, we demonstrate that the age-related decrease in intestinal sodium-dependent Pi absorption correlates with decreased NaPi-IIb mRNA expression. Our data also suggest that the effect of 1,25-(OH)2 vitamin D3 on NaPi-IIb expression is at least partially mediated by gene transcription in suckling rats.

2005 ◽  
Vol 93 (3) ◽  
pp. 299-307 ◽  
Author(s):  
Tsui-Shan Chau ◽  
Wan-Ping Lai ◽  
Pik-Yuen Cheung ◽  
Murray J. Favus ◽  
Man-Sau Wong

The responses of renal vitamin D metabolism to its major stimuli alter with age. Previous studies showed that the increase in circulating 1,25-dihydroxyvitamin D (1,25(OH)2D3) as well as renal 25-hydroxyvitamin D3 1-α hydroxylase (1-OHase) activity in response to dietary Ca or P restriction reduced with age in rats. We hypothesized that the mechanism involved in increasing circulating 1,25(OH)2D3 in response to mineral deficiency alters with age. In the present study, we tested the hypothesis by studying the expression of genes involved in renal vitamin D metabolism (renal 1-OHase, 25-hydroxyvitamin D 24-hydroxylase (24-OHase) and vitamin D receptor (VDR)) in young (1-month-old) and adult (6-month-old) rats in response to low-phosphate diet (LPD). As expected, serum 1,25(OH)2D3 increased in both young and adult rats upon LPD treatment and the increase was much higher in younger rats. In young rats, LPD treatment decreased renal 24-OHase (days 1–7, P<0·01) and increased renal 1-OHase mRNA expression (days 1–5, P<0·01). LPD treatment failed to increase renal 1-OHase but did suppress 24-OHase mRNA expression (P<0·01) within 7 d of LPD treatment in adult rats. Renal expression of VDR mRNA decreased with age (P<0·001) and was suppressed by LPD treatment in both age groups (P<0·05) Feeding of adult rats with 10 d of LPD increased 1-OHase (P<0·05) and suppressed 24-OHase (P<0·001) as well as VDR (P<0·05) mRNA expression. These results indicate that the increase in serum 1,25(OH)2D3 level in adult rats during short-term LPD treatment is likely to be mediated by a decrease in metabolic clearance via the down-regulation of both renal 24-OHase and VDR expression. The induction of renal 1-OHase mRNA expression in adult rats requires longer duration of LPD treatment than in younger rats.


2003 ◽  
Vol 284 (4) ◽  
pp. F737-F742 ◽  
Author(s):  
Svetlana M. Nabokina ◽  
Veedamali S. Subramanian ◽  
Hamid M. Said

Biotin, an essential water-soluble micronutrient, cannot be synthesized by mammals; rather, it is obtained from exogenous sources via uptake by intestinal epithelia. Renal epithelia reclaim the vitamin that is filtered in the glomeruli. Both epithelia take up biotin via the sodium-dependent multivitamin transporter (SMVT). Little is known about ontogenic regulation of the renal and intestinal biotin transport processes and about the mechanism(s) involved in any such regulation. In this study, we sought to examine and compare ontogenic aspects of the renal and intestinal biotin uptake processes using purified brush-border membrane vesicles (BBMV) isolated from the kidney cortex and jejunum of suckling and adult rats. Clear ontogenic changes were observed in the intestinal biotin uptake process, which were mediated via changes in V max and apparent K m. Parallel changes were also seen in protein, mRNA, and transcription rate of SMVT as indicated by results of Western blotting, RT-PCR, and nuclear run-on assays, respectively. In contrast, biotin uptake by renal BBMV did not show ontogenic changes; i.e., it was similar in suckling and adult rats. Also, the levels of SMVT protein and mRNA were similar in the kidneys of both age groups. These data show that biotin uptake by renal and intestinal epithelial cells responds differently to ontogenic regulation. In addition, the ontogenic changes observed in the intestinal biotin uptake process involve the entry step of the vitamin at the BBM and appear to be mediated via a transcriptional mechanism(s).


2000 ◽  
Vol 164 (3) ◽  
pp. 339-348 ◽  
Author(s):  
N Akeno ◽  
A Matsunuma ◽  
T Maeda ◽  
T Kawane ◽  
N Horiuchi

We investigated the effects of dexamethasone on vitamin D-1alpha-hydroxylase and -24-hydroxylase expression and on vitamin D receptor (VDR) content in the kidneys of mice fed either a normal (NCD) diet or a calcium- and vitamin D-deficient (LCD) diet for 2 weeks. For the last 5 days mice received either vehicle or dexamethasone (2 mg/kg per day s.c.). Dexamethasone significantly increased plasma calcium concentrations without changing plasma concentrations of 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) in both NCD and LCD groups. Northern blot and enzyme activity analyses in NCD mice revealed that dexamethasone increased renal VDR mRNA expression modestly and greatly increased 24-hydroxylase mRNA abundance and enzyme activity, but did not affect 1alpha-hydroxylase mRNA abundance and enzyme activity. In mice fed an LCD diet, dexamethasone increased renal VDR mRNA expression 1.5-fold, decreased 1alpha-hydroxylase mRNA abundance (52%) and activity (34%), and markedly increased 24-hydroxylase mRNA abundance (16-fold) and enzyme activity (9-fold). Dexamethasone treatment did not alter functional VDR number (B(max) 125-141 fmol/mg protein) or ligand affinity (K(d) 0.13-0.10 nM) in LCD mice. Subcutaneous injections of 1,25(OH)(2)D(3) (0.24 nmol/kg per day for 5 days) into NCD mice strongly increased renal 24-hydroxylase mRNA abundance and enzyme activity, while there was no effect of dexamethasone on renal 24-hydroxylase expression in these mice. This may be due to overwhelming induction of 24-hydroxylase by 1,25(OH)(2)D(3). These findings suggest that glucocorticoid-induced osteoporosis is caused by direct action of the steroids on bone, and the regulatory effect of glucocorticoids on renal 25-hydroxyvitamin D(3) metabolism may be less implicated in the initiation and progression of the disease.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3078-3078
Author(s):  
Joellen H. H. Lin ◽  
Michael B. Boffa ◽  
Marlys L. Koschinsky

Abstract Thrombin-activable fibrinolysis inhibitor (TAFI) is a carboxypeptidase zymogen defining a pathway that functions as a molecular link between coagulation and fibrinolysis. Activation by thrombin, the thrombin-thrombomodulin complex, or plasmin, the resultant enzyme (TAFIa) affects the balance between these two cascades by attenuating positive feedback in the fibrinolytic cascade, thereby inhibiting fibrin clot lysis. Plasma TAFI antigen levels vary significantly between individuals, which has implicated TAFI as a risk factor for thrombotic diseases. TAFIa can also inactivate pro-inflammatory peptides such as the anaphylatoxins and bradykinin, suggesting a role for the TAFI pathway as a link between coagulation and inflammation. TAFI expression in cultured hepatic cells is decreased by interleukins −1 and −6, and plasma TAFI levels in human are decreased in experimental endotoxemia. Although the liver is the main source of plasma TAFI, TAFI has also been identified in platelets, and TAFI mRNA has been detected in the Dami (megakaryoblastic) cell line (but not the MEG-01 cell line). TAFI mRNA has also been detected in adipocytes of patients with type 2 diabetes; however, TAFI mRNA expression in human umbilical vein endothelial cells is still a point of controversy. It has been hypothesized that platelet TAFI arises from TAFI gene expression in megakaryocytes (MK). Using RT-PCR and real-time RT-PCR, we not only confirmed the presence of TAFI mRNA in Dami cells, but also found that TAFI mRNA abundance was increased throughout Dami cell differentiation along the megakaryocytes/platelet lineage (up to 8 fold increase after 48 hours) stimulated by phorbol myristate acetate (PMA) treatment. The quantitative real-time RT-PCR experiments revealed that TAFI mRNA is present in differentiated Dami cells at a level that is only one-hundredth of that observed in HepG2 (hepatoma) cells. Using transfection experiments with luciferase reporter plasmids containing progressive deletions of the human TAFI 5′-flanking region, we identified the sequence between −438 and −257 (relative to the initiator methionine codon) to be responsible for the enhanced TAFI gene transcription as Dami cells differentiate into more mature MK-like cells. Moreover, using western blot analysis, we detected TAFI protein expression in the medium of differentiated Dami cells, but not untreated Dami cells. Together, these data provide further evidence supporting the idea that platelet TAFI is generated from TAFI gene expression in megakaryocytes rather than by uptake from the plasma. To study TAFI gene regulation in monocytes and macrophages, RT-PCR and realtime RT-PCR were used to detected and quantify, respectively, TAFI mRNA expression in both THP-1 and THP-1 cells that have been differentiated into macrophage-like cells (THP-1ma) by PMA treatment. TAFI mRNA abundance was similar in THP-1 cells as what was observed in differentiated Dami cells. In addition, we found a progressive decrease in TAFI mRNA abundance throughout the THP-1 differentiation with an 85% decrease after 24 hours of PMA treatment. Transfection experiments using luciferase reporter plasmids representing progressive deletions of the human TAFI 5′-flanking region identified sequences between −151 and −121 as harboring key promoter elements for the differentiation-associated decrease in TAFI gene expression as THP-1 differentiate into macrophage-like cells. However, no TAFI protein was detected in either THP-1 or THP-1ma conditioned medium using western blot analyses. Nonetheless, extra-hepatic expression of TAFI, such as platelet, monocytes and macrophages, suggests novel roles for TAFI pathway beyond regulation of fibrin clot breakdown.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 908-908
Author(s):  
Djamel Aggoune ◽  
Nathalie Sorel ◽  
Sanaa El Marsafy ◽  
Marie Laure Bonnet ◽  
Denis Clay ◽  
...  

Abstract Abstract 908 There is growing evidence that the bone marrow microenvironment could participate to the progression of chronic myeloid leukemia (CML). Recent data show indeed that placental growth factor (PGF) expression is highly induced in stromal cells from CML patients although they are not part of the leukemic clone as they are Ph1-negative (Schmidt et al, Cancer Cell 2011). It is possible that leukemic cells instruct the niche components via extracellular or contact signals, transforming progressively the “normal niche” into a functionally “abnormal niche” by inducing aberrant gene expression in these cells, similar to the pattern that has been identified in cancer-associated fibroblasts (CAF). In an effort to identify the differential gene expression pattern in the CML niche, we have undertaken two strategies of gene expression profiling using a Taqman Low Density Arrays (TLDA) protocol designed for 93 genes involved in antioxidant pathways (GPX, PRDX, SOD families), stromal cell biology (Collagen, clusterin, FGF, DHH), stem cell self-renewal (Bmi1, MITF, Sox2) and hematopoietic malignancies (c-Kit, hTERT, Dicer, beta-catenin, FOXO3). The first strategy consisted in the analysis of mesenchymal stem cells (MSCs) isolated from the bone marrow of newly diagnosed CP-CML patients (n=11). As a control, we have used MSCs isolated from the bone marrow of age-matched donors (n=3). MSCs were isolated by culturing 6–8.106 bone marrow mononuclear cells in the presence of b-FGF (1 ng/ml). At 2–3 weeks, cells were characterized by the expression of cell surface markers (CD105+, CD90+) and by their potential of differentiation towards osteoblastic, chondrocytic and adipocytic lineages. The second strategy aimed to study the potential instructive influence of leukemic cells in the gene expression program of normal MSC after co-culture with either the UT7 cell line expressing BCR-ABL (3 days) or with CD34+ cells isolated from CP-CML at diagnosis (5 days) as compared to co-culture with cord blood CD34+ cells. After culture, CD45-negative MSC were cell-sorted and analyzed by TLDA. All results were analyzed using the StatMiner software. Results: TLDA analysis of gene expression pattern of MSC from CML patients (n=11) as compared to normal MSCs (n=3) identified 6 genes significantly over-expressed in CML-MSC: PDPN (10-Fold Increase), V-CAM and MITF (∼8 Fold increase), MET, FOXO3 and BMP-1 (∼ 5 Fold increase). To confirm these results we have performed Q-RT-PCR in a cohort of CML-MSC (n= 14, including the 11 patients as analyzed in TLDA) as compared to normal MSC. High levels of PDPN (Podoplanin, ∼8 fold increase), MITF (Microphtalmia Associated Transcription factor, 4-Fold) and VCAM (Vascular Cell Adhesion Protein, 2 fold increase) mRNA were again observed on CML MSCs. Our second strategy (co-culture of normal MSC with BCR-ABL-expressing UT7) revealed an increase of IL-8 and TNFR mRNA expression in co-cultured MSCs (∼5-fold ) whereas there was a major decrease in the expression of DHH (∼ 25-fold) upon contact with BCR-ABL-expressing cells. No modification of the expression of PDPN, MITF or VCAM was noted in normal MSC after this 3-day co-culture strategy using UT7-BCR-ABL cells. Current experiments are underway to determine if primary CD34+ cells from CML patients at diagnosis could induce a specific gene expression pattern in normal MSC after 5 days of co-culture. PDPN is a glycoprotein involved in cell migration and adhesion, acting downstream of SRC. It has been shown to promote tumor formation and progression in solid tumor models and is highly expressed in CAFs. MITF is a bHLH transcription factor involved in the survival of melanocyte stem cells and metastatic melanoma. Finally, high VCAM1 mRNA expression by MSCs from CML patients could be involved in increased angiogenesis known to be present on CML microenvironment. In conclusion, our results demonstrate an abnormal expression pattern of 3 important genes (PDPN, MITF and VCAM1) in MSC isolated in CP-CML patients at diagnosis. The mechanisms leading to an increased mRNA expression (instructive or not instructive by leukemic cells) and their relevance to CML biology are under evaluation. Our results, confirming previous data, suggest strongly the existence of a molecular cross-talk between leukemic cells and the leukemic niche. The elucidation of such aberrant pathways in the microenvironment could lead to the development of “niche-targeted” therapies in CML. Disclosures: Turhan: Novartis, Bristol Myers Squibb: Honoraria, Research Funding.


2020 ◽  
Author(s):  
Thomas S. Lisse

AbstractSuperoxide, a form of reactive oxygen species (ROS), is catabolized by superoxide dismutase (SOD) and contributes to carcinogenesis via the oxidative damage it inflicts on cells. The aim of this research was to analyze the potential vitamin D-mediated regulation of the antioxidative “SOD1-to-SOD2 switch” within the human MG-63 osteosarcoma model. For this study, real-time PCR analysis was performed using MG-63 cells exposed to metabolically active 1,25(OH)2D3. Frist, a sustained statistically significant >2-fold suppression of proliferating cell nuclear antigen (PCNA) transcripts was observed after 10nM but not at 100nM of 1,25(OH)2D3 treatment, suggesting a cytostatic effect. In order to assess regulators of mitochondrial oxidative phosphorylation, gene expression of COX2 and COX4l1 of the mitochondrial complex IV and antioxidative enzymes (SOD1, SOD2 and Catalase (CAT)) were monitored. For COX2 and COX4l1, no changes in gene expression were observed. However, a concomitant decrease in CAT and SOD1 mRNA, and increase in SOD2 mRNA after 24 hours of 10nM 1,25(OH)2D3 treatment were observed. A ~8-fold increase in SOD2 mRNA was apparent after 48 hours. The significant increase in SOD2 activity in the presence of vitamin D indicates an antioxidant potential and sensitization of vitamin D during osteosarcoma transformation and mitochondrial detoxification over time.


2020 ◽  
Vol 10 (7) ◽  
pp. 2554
Author(s):  
Thomas S. Lisse

Superoxide, a form of reactive oxygen species (ROS), is catabolized by superoxide dismutase (SOD) and contributes to carcinogenesis via the oxidative damage it inflicts on cells. The aim of this research was to analyze the potential vitamin D-mediated regulation of the antioxidative “SOD1-to-SOD2 switch” within the human MG-63 osteosarcoma model. For this study, real-time PCR analysis was performed using MG-63 cells exposed to metabolically active 1,25(OH)2D3. First, a sustained statistically significant >2-fold suppression of proliferating cell nuclear antigen (PCNA) transcripts was observed after 10 nM but not at 100 nM of 1,25(OH)2D3 treatment, suggesting a cytostatic effect. In order to assess regulators of mitochondrial oxidative phosphorylation, gene expression of COX2 and COX4l1 of the mitochondrial complex IV and antioxidative enzymes (SOD1, SOD2 and Catalase (CAT)) were monitored. For COX2 and COX4l1, no changes in gene expression were observed. However, a concomitant decrease in CAT and SOD1 mRNA, and increase in SOD2 mRNA after 24 h of 10 nM 1,25(OH)2D3 treatment were observed. A ~8-fold increase in SOD2 mRNA was apparent after 48 ours. The significant increase in SOD2 activity in the presence of vitamin D indicates an antioxidant potential and sensitization of vitamin D during osteosarcoma transformation and mitochondrial detoxification over time.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3927-3927
Author(s):  
Anne J Novak ◽  
Takashi Akasaka ◽  
Michelle Manske ◽  
Tammy Price-Troska ◽  
Mamta Gupta ◽  
...  

Abstract Abstract 3927 Poster Board III-863 In previous studies we characterized the t(X;14)(p11.4;q32) translocation in a patient with MALT lymphoma and found that GPR34, an orphan G-protein coupled receptor (GPCR), was highly expressed due to its juxtaposition to the IGHSA2 switch region. As part of a larger MALT gene expression-profiling project, we have now acquired gene expression analysis on the patient carrying the t(X;14)(p11;q32) translocation and have confirmed overexpression of GPR34. We then measured GPR34 mRNA expression in a panel of MALT lymphomas (n=17) and found that GPR34 was expressed at levels higher than that seen in normal B cells (mean, 11.3 fold; median, 5.5; range, 1.4-64 fold). When analyzed separately, 70% (12/17) had an expression level greater than 3-fold over normal B cells. Of note, in a gastric MALT lymphoma specimen, we found a 64 fold increase in GPR34 mRNA expression. FISH studies performed on this specimen showed an extra intact GPR34 signal but no translocation involving IGH or GPR34, suggesting that other mechanisms, including gene dosage effect, can upregulate GPR34. Elevated expression of GPR34 mRNA was also detected in other histologic types of NHL, but not to the extent seen in MALT lymphoma. Taken together, these data suggest that GPR34 is commonly overexpressed in MALT lymphoma and that deregulation of GPR34 expression can occur independent of a t(X;14)(p11.4;q32) translocation. The receptor encoded by GPR34 is most similar to the PY2 receptor subfamily of GPCR and GPR34 mRNA transcripts are abundant in mast cells while lower levels were detected in other immune cells including B cells. Signals from GPR34 have been briefly described and the results to date suggest that overexpression of GPR34 results in an accumulation of inositol phosphates. To further characterize the impact of GPR34 overexpression on cell signaling, HeLa cells were transduced with a retroviral expression plasmid (pBMN-GFP) that expresses GPR34 and GFP. GFP expressing cells were isolated and overexpression of GPR34 mRNA was confirmed by PCR and GPR34 protein expression was detected by flow cytometry. When normalized to the isotype control, pBMN-GPR34 cells expressed 17-fold more GPR34 on their cell surface compared to the pBMN-vector control cells. To determine which signaling pathways were affected by GPR34 overexpression, pBMN-GPR34 or pBMN-vector control cells were transfected with an AP-1, CRE, NF-κB, E2F, SRE, NFAT, or ISRE- luciferase reporter plasmid. Upon normalization with renilla, pBMN-GPR34 expressing cells had increased luciferase activity (n=3) driven by AP-1 (5.35-fold), CRE (4.7), NF-κB (2.8-fold), and E2F (2.13) when compared to pBMN-vector control cells. ISRE, NFAT, and SRE mediated luciferase expression was similar in the GPR34 and control cells. AP-1 and CRE have been implicated in a large variety of cellular processes, including transformation, and both AP-1 and CRE activity is induced upon activation of MAP kinases. To determine if MAPK activity was also upregulated in GPR34 expressing cells, we analyzed the phosphorylation status of Erk1/2 in pBMN-GPR34 cells by western blot and found that Erk1/2 was constitutively phosphorylated in GRP34 expressing cells (1.8 fold increase) compared to vector control cells. Increased phosphorylation of PKC-α/β was also detected in pBMN-GPR34 cells (3.5 fold increase compared to control cells). To determine the biologic impact of GRP34 overexpression on cell growth, the proliferation rates of pBMN-control and pBMN-GPR34 cells were compared and it was found that proliferation of GPR34 expressing cells was 2.2 times higher than that seen in control cells. Because the MAPK kinase pathway was found to be active in the pBMN-GPR34 cells, we tested the effect of the MEK inhibitor PD98059 on proliferation and saw a dose dependent decrease in proliferation of GPR34 expressing cells. These results suggest that GPR34-mediated proliferation is Erk-dependent. In summary, these data suggest that deregulation of GPR34 is commonly found in MALT lymphoma and that overexpression of GPR34 results in activation of Erk1/2, phosphorylation of PKC, and results is AP-1 and CRE mediated transcription. Additionally, our data suggest that overexpression of GPR34 results in increased cell growth that is MAPK-dependent. Taken together, this studies indicate that overexpression of a GPCR, GPR34, may be a novel mechanism by which MALT, lymphoma, and potentially other subtypes of NHL, develop. Disclosures: No relevant conflicts of interest to declare.


2003 ◽  
Vol 285 (6) ◽  
pp. G1317-G1324 ◽  
Author(s):  
Hua Xu ◽  
Jennifer K. Uno ◽  
Michael Inouye ◽  
Liping Xu ◽  
Jason B. Drees ◽  
...  

The current experiments were designed to study the effect of β-estradiol on type IIb sodium-coupled phosphate (NaPi-IIb) cotransporter gene expression. Uptake studies with intestinal brush-border membrane vesicles (BBMV) showed that estrogen treatment increased sodium-dependent phosphate absorption by ∼45% in rat intestine. Northern blot analysis indicated that NaPi-IIb mRNA expression was increased by ∼50% after estrogen treatment. Western blot analysis also detected an increase in BBMV NaPi-IIb protein expression in estrogen-treated rats. In human intestinal Caco-2 cells, NaPi-IIb mRNA abundance was increased ∼60% after estrogen treatment, and this increase could be abolished by inhibition of gene transcription. Transfection studies with human NaPi-IIb promoter reporter constructs showed that the promoter was responsive to estrogen treatment. These studies demonstrate for the first time that estrogen stimulates intestinal sodium-dependent phosphate absorption in female rats. This stimulation is associated with increased NaPi-IIb mRNA and protein expression. Thus the effect of estrogen on intestinal Pi absorption may be partially due to activation of NaPi-IIb gene transcription.


2002 ◽  
Vol 174 (1) ◽  
pp. 63-70 ◽  
Author(s):  
H Tanaka ◽  
A Wakisaka ◽  
H Ogasa ◽  
S Kawai ◽  
CT Liang

In order to establish the cellular basis for using growth factors as possible therapeutic agents for the age-dependent deficit in bone formation activity, we examined the individual and combined effects of IGF-I and/or platelet-derived growth factor (PDGF) on the gene expression of osteoblast-related markers in male rats. The expression of osteoblast markers was examined in the femurs of adult and old rats following marrow ablation, which amplifies gene expression activity. The mRNA levels of collagen(alpha1) (I) (COLI), alkaline phosphatase (AP), osteopontin (OP) and osteocalcin (OC) were significantly lower in the old as compared with the adult rats. To determine whether growth factors can abolish the age-related deficits in mRNA expression in old bone, PDGF and/or IGF-I were infused directly into the right femur for 5 days following marrow ablation. The contralateral femur was infused with vehicle only and used as a control. PDGF stimulated the expression of OP mRNA in both adult and old rats, whereas COLI, AP and OC mRNAs were not affected. IGF-I infusion did not have a significant effect on mRNA expression in adult rats. In contrast, treatment with IGF-I significantly enhanced the mRNA levels of COLI, AP and OP in old rats. To examine whether the combination of both factors could affect the expression of osteoblast markers synergistically, PDGF and IGF-I were infused together. In adult bones, the combined treatment with PDGF and IGF-I caused a slight increase in the level of OP gene expression but no change in AP, OC or COLI genes. Although neither IGF-I nor PDGF alone was effective in stimulating the expression of OC, the combined treatment in old bones enhanced OC expression significantly. The expression of COLI, AP and OP was also stimulated, but the stimulation was no different from that of IGF-I alone. In PDGF plus IGF-I treatment with a high dose, no dose-response effects were observed. Within the limits of the present study, it is suggested that IGF-I and, to a much lesser extent, PDGF may partially restore the deficit in the expression of osteoblast markers in old bones, and that the combination of both factors is slightly better than IGF-I alone in stimulating OC expression.


Sign in / Sign up

Export Citation Format

Share Document