scholarly journals Recruitment of NADH shuttling in pressure-overloaded and hypertrophic rat hearts

2007 ◽  
Vol 292 (5) ◽  
pp. C1880-C1886 ◽  
Author(s):  
E. Douglas Lewandowski ◽  
J. Michael O'Donnell ◽  
Thomas D. Scholz ◽  
Natalia Sorokina ◽  
Peter M. Buttrick

Glucose metabolism in the heart requires oxidation of cytosolic NADH from glycolysis. This study examines shuttling reducing equivalents from the cytosol to the mitochondria via the activity and expression of the oxoglutarate-malate carrier (OMC) in rat hearts subjected to 2 wk (Hyp2, n = 6) and 10 wk (Hyp10, n = 8) of pressure overload hypertrophy vs. that of sham-operated rats (Sham2, n = 6; and Sham10, n = 7). Moderate aortic banding produced increased atrial natriuretic factor (ANF) mRNA expression at 2 and 10 wk, but only at 10 wk did hearts develop compensatory hypertrophy (33% increase, P < 0.05). Isolated hearts were perfused with the short-chain fatty acid [2,4-13C2]butyrate (2 mM) and glucose (5 mM) to enable dynamic-mode 13C NMR of intermediate exchange across OMC. OMC flux increased before the development of hypertrophy: Hyp2 = 9.6 ± 2.1 vs. Sham2 = 3.7 ± 1.2 μM·min−1·g dry wt−1, providing an increased contribution of cytosolic NADH to energy synthesis in the mitochondria. With compensatory hypertrophy, OMC flux returned to normal: Hyp10 = 3.9 ± 1.7 vs. Sham10 = 3.8 ± 1.2 μM·g−1·min−1. Despite changes in activity, no differences in OMC expression occurred between Hyp and Sham groups. Elevated OMC flux represented augmented cytosolic NADH shuttling, coupled to increased nonoxidative glycolysis, in response to hypertrophic stimulus. However, development of compensatory hypertrophy moderated the pressure-induced elevation in OMC flux, which returned to control levels. The findings indicate that the challenge of pressure overload increases cytosolic redox state and its contribution to mitochondrial oxidation but that hypertrophy, before decompensation, alleviates this stress response.

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Ryan Lahey ◽  
Susan K Fischer ◽  
Xuerong Wang ◽  
Jian Bi ◽  
Andrew N Carley ◽  
...  

The remodeled metabolic phenotype of hypertrophic hearts includes inefficient glucose oxidation, due in part to pyruvate carboxylation into anaplerosis. Increased carboxylation of pyruvate to malate via elevated malic enzme-1 (ME1) also consumes NADPH, which is necessary for maintaining glutathione reduction. Therefore, we studied the consequences of selective inhibition of ME1 expression via non-native miRNA targeted to the ME1 gene (miRME1) in hypertrophied rat hearts after transverse aortic constriction (TAC). TAC elevated ME1 content, but ME1 was lowered in hearts receiving miRME1 vs PBS infusion (*P<0.01). The effects of ME1 suppression on anaplerosis and GSH content were studied in isolated hearts supplied 13C palmitate, glucose, and lactate. While Sham miRME1 hearts showed no further reduction of inherently low baseline ratios of anaplerosis to citrate synthase flux from normal hearts, miRME1 reduced anaplerosis in TAC to baseline: TAC miRME1=0.034±0.004; TAC PBS=0.081±0.005 (*P<0.01, **P<0.001). Importantly, ME1 suppression restored GSH in TAC (†P<0.05). The findings demonstrate the maladaptive increase in anaplerosis via ME1 in TAC is associated with reduced GSH content. Suppressing increased ME1 expression in hypertrophied hearts, and thus consumption of NADPH for anaplerotic malate, produced favorable metabolic shifts, improving intracellular redox state.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Weiwei Wang ◽  
Hao Zhang ◽  
Guo Xue ◽  
Li Zhang ◽  
Weihua Zhang ◽  
...  

Background. Ischemic preconditioning (IPC) strongly protects against myocardial ischemia reperfusion (IR) injury. However, IPC protection is ineffective in aged hearts. Exercise training reduces the incidence of age-related cardiovascular disease and upregulates the ornithine decarboxylase (ODC)/polyamine pathway. The aim of this study was to investigate whether exercise can reestablish IPC protection in aged hearts and whether IPC protection is linked to restoration of the cardiac polyamine pool.Methods. Rats aging 3 or 18 months perform treadmill exercises with or without gradient respectively for 6 weeks. Isolated hearts and isolated cardiomyocytes were exposed to an IR and IPC protocol.Results. IPC induced an increase in myocardial polyamines by regulating ODC and spermidine/spermine acetyltransferase (SSAT) in young rat hearts, but IPC did not affect polyamine metabolism in aged hearts. Exercise training inhibited the loss of preconditioning protection and restored the polyamine pool by activating ODC and inhibiting SSAT in aged hearts. An ODC inhibitor,α-difluoromethylornithine, abolished the recovery of preconditioning protection mediated by exercise. Moreover, polyamines improved age-associated mitochondrial dysfunctionin vitro.Conclusion. Exercise appears to restore preconditioning protection in aged rat hearts, possibly due to an increase in intracellular polyamines and an improvement in mitochondrial function in response to a preconditioning stimulus.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Ludovic O Bénard ◽  
Daniel S Matasic ◽  
Mathilde Keck ◽  
Anne-Marie Lompré ◽  
Roger J Hajjar ◽  
...  

STromal Interaction Molecule 1 (STIM1), a membrane protein of the sarcoplasmic reticulum, has recently been proposed as a positive regulator of cardiomyocyte growth by promoting Ca2+ entry through the plasma membrane and the activation of Ca2+-mediated signaling pathways. We demonstrated that STIM1 silencing prevented the development of left ventricular hypertrophy (LVH) in rats after abdominal aortic banding. Our aim was to study the role of STIM1 during the transition from LVH to heart failure (HF). For experimental timeline, see figure. Transverse Aortic Constriction (TAC) was performed in C57Bl/6 mice. In vivo gene silencing was performed using recombinant Associated AdenoVirus 9 (AAV9). Mice were injected with saline or with AAV9 expressing shRNA control or against STIM1 (shSTIM1) (dose: 1e+11 viral genome), which decreased STIM1 cardiac expression by 70% compared to control. While cardiac parameters were similar between the TAC groups at weeks 3 and 6, shSTIM1 animals displayed a progressive and total reversion of LVH with LV walls thickness returning to values observed in sham mice at week 8. This reversion was associated with the development of significant LV dilation and severe contractile dysfunction, as assessed by echography. Hemodynamic analysis confirmed the altered contractile function and dilation of shSTIM1 animals. Immunohistochemistry showed a trend to more fibrosis. Despite hypertrophic stimuli, there was a significant reduction in cardiac myocytes cross-section area in shSTIM1-treated animals as compared to other TAC mice. This study showed that STIM1 is essential to maintain compensatory LVH and that its silencing accelerates the transition to HF.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Hideaki Tagashira ◽  
Takayuki Matsumoto ◽  
Kumiko Taguchi ◽  
Tsuneo Kobayashi ◽  
Kohji Fukunaga

Objective: We previously reported that sigma-1 receptor ( σ 1 R ) expression in the thoracic aorta decreased after pressure overload (PO) induced by abdominal aortic banding in ovariectomized (OVX) rats. Here, we asked whether stimulation of σ 1 R with the selective agonist SA4503 elicits functional recovery of aortic vasodilation and constriction following vascular injury in OVX rats with PO. Methods: SA4503 (0.3-1.0 mg kg -1 ) and NE-100 (an σ 1 R antagonist, 1.0 mg kg -1 ) were administered orally for 4 weeks (once daily) to OVX-PO rats, starting from the onset of aortic banding. Vascular functions of isolated descending aorta were measured following phenylephrine (PE)- or endothelin-1 (ET-1)-induced vasoconstriction and acetylcholine (ACh)- or clonidine-induced vasodilation. Results: σ 1 R expression in aortic smooth muscle and endothelial cells decreased significantly 4 weeks after PO in OVX rats (vs. Sham or OVX only group). SA4503 administration rescued PO-induced σ 1 R decreases in the descending aorta. SA4503 treatment also rescued PO-induced impairments in ACh- and clonidine-induced vasodilation without affecting PE- and ET-1-induced vasoconstriction. Ameliorated ACh- and clonidine-induced vasodilation was closely associated with increased Akt activity and in turn endothelial nitric oxide synthase (eNOS) phosphorylation. SA4503-mediated improvement of vasodilation was blocked by NE-100 treatment. Conclusions: σ 1 R is downregulated following PO-induced endothelial injury in OVX rats. The selective σ 1 R agonist SA4503 rescues impaired endothelium-dependent vasodilation in the aorta from OVX-PO rats through σ 1 R stimulation, enhancing eNOS-cGMP signaling in vascular endothelial cells. These observations encourage development of novel therapeutics targeting σ 1 R to prevent vascular endothelial injury in postmenopausal woman.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Danish Sayed ◽  
Shweta Rane ◽  
Leng-Yi Chen ◽  
Minzhen He ◽  
Jacqueline Lypowy ◽  
...  

MicroRNA (miRNA) are ~22 ribonucleotides-long, with a potential to recognize multiple mRNA targets guided by sequence complimentarity. This class of molecules is functionally versatile, with the capacity to specifically inhibit translation, as well as, induce mRNA degradation, through targeting the 3′-untranslated regions. The levels of individual miRNA vary under different developmental, biological, or pathological conditions, thus, implicating them in normal and pathological cellular attributes. We have previously reported a miRNA signature that distinguishes pressure-overload compensatory hypertrophy by recapitulating the neonatal pattern. We hypothesized that this ’signature’ might aid in discriminating the underlying molecular differences in genetic models of cardiac hypertrophy, as seen in the beta1 and 2 adrenergic receptor (B1AR and B2AR) transgenic (Tg) mice. To address this, we used microarray analysis of RNA isolated from the hearts of 3 months old B1AR and B2AR mice. In general, while both mice exhibited an overlap with the hypertrophy signature including, upregulation of miR-21 and downregulation of miR-133a, miR-133b, and miR-185, the B2-AR Tg exhibited a more extensive overlap with the hypertrophy pattern, which further included upregulation of miR-199a*, miR-214, and miR-15b. To understand the functional significance of these miRNA in myocyte hypertrophy, we cloned them and their anti-sense sequences into adenoviral vectors. Significantly, over-expression miR-21 resulted in a, dose-dependent, branching (sprouting) of the cells. Computational predictions by ’TargetScanS’ identified sprouty as potential target. Subsequently, we confirmed down-regulation of sprouty by over-expression of miR-21 and vice versa. Sprouty is a known inhibitor of the Ras-MAPK signaling pathway and is, concordantly, downregulated in many forms of cancer. In the heart, sprouty has been suggested to control myocyte size and vascularization during cardiac hypertrophy. Thus, we propose that B1AR and B2AR Tg models exhibit distinct miRNA profiles that converge on that of pressure-overload cardiac hypertrophy. Moreover, the commonly over-expressed miR-21 plays a role in downregulating sprouty, an antagonist of the Ras-MAPK pathway.


2006 ◽  
Vol 290 (2) ◽  
pp. E372-E379 ◽  
Author(s):  
Outi M. Hyyti ◽  
Xue-Han Ning ◽  
Norman E. Buroker ◽  
Ming Ge ◽  
Michael A. Portman

Thyroid hormone regulates metabolism through transcriptional and posttranscriptional mechanisms. The integration of these mechanisms in heart is poorly understood. Therefore, we investigated control of substrate flux into the citric acid cycle (CAC) by thyroid hormone using retrogradely perfused isolated hearts ( n = 20) from control (C) and age-matched thyroidectomized rats (T). We determined substrate flux and fractional contributions (Fc) to the CAC by 13C-NMR spectroscopy and isotopomer analyses in hearts perfused with [1,3-13C]acetoacetic acid (0.17 mM), l-[3-13C]lactic acid (LAC, 1.2 mM), [U-13C]long-chain mixed free fatty acids (FFA, 0.35 mM), and unlabeled glucose. Some T hearts were supplied triiodothyronine (T3, 10 nM; TT) for 60 min. Prolonged hypothyroid state reduced myocardial oxygen consumption, although T3 produced no significant change. Hypothyroidism reduced overall CACflux but selectively altered only FFAflux among the individual substrates, though LACflux trended upward. T3 rapidly decreased lactate Fc and flux. 13C labeling of glutamine through glutamate was increased in T with further enhancement in TT. The glutamate-to-glutamine ratio was significantly lower in T and TT. Immunoblots detected a decrease in hypothyroid hearts for muscle carnitine palmitoyltransferase I (CPT I) and a marked increase in pyruvate dehydrogenase kinase (PDK)-2 with no changes in liver CPT I, PDK-4, or hexokinase 2. TT, but not T, displayed elevated glutamine synthetase (GS) expression. These studies showed that T3 regulates cardiac metabolism through integration of several mechanisms, including changes in oxidative enzyme content and rapid modulation of individual substrates fluxes. T3 also moderates forward glutamine flux, possibly by increasing the overall activity of GS.


2018 ◽  
Vol 38 (5) ◽  
Author(s):  
Zheng Wang ◽  
Lu Gao ◽  
Lili Xiao ◽  
Lingyao Kong ◽  
Huiting Shi ◽  
...  

Bakuchiol (Bak), a monoterpene phenol isolated from the seeds of Psoralea corylifolia, has been widely used to treat a large variety of diseases in both Indian and Chinese folkloric medicine. However, the effects of Bak on cardiac hypertrophy remain unclear. Therefore, the present study was designed to determine whether Bak could alleviate cardiac hypertrophy. Mice were subjected to aortic banding (AB) to induce cardiac hypertrophy model. Bak of 1 ml/100 g body weight was given by oral gavage once a day from 1 to 8 weeks after surgery. Our data demonstrated for the first time that Bak could attenuate pressure overload-induced cardiac hypertrophy and could attenuate fibrosis and the inflammatory response induced by AB. The results further revealed that the effect of Bak on cardiac hypertrophy was mediated by blocking the activation of the NF-κB signaling pathway. In vitro studies performed in neonatal rat cardiomyocytes further proved that the protective effect of Bak on cardiac hypertrophy is largely dependent on the NF-κB pathway. Based on our results, Bak shows profound potential for its application in the treatment of pathological cardiac hypertrophy, and we believe that Bak may be a promising therapeutic candidate to treat cardiac hypertrophy and heart failure.


2003 ◽  
Vol 285 (3) ◽  
pp. H1261-H1269 ◽  
Author(s):  
Ping Hu ◽  
Dongfang Zhang ◽  
LeAnne Swenson ◽  
Gopa Chakrabarti ◽  
E. Dale Abel ◽  
...  

We developed a minimally invasive method for producing left ventricular (LV) pressure overload in mice. With the use of this technique, we quickly and reproducibly banded the transverse aorta with low surgical morbidity and mortality. Minimally invasive transverse aortic banding (MTAB) acutely and chronically increased LV systolic pressure, increased heart weight-to-body weight ratio, and induced myocardial fibrosis. We used this technique to determine whether reduced insulin signaling in the heart altered the cardiac response to pressure overload. Mice with cardiac myocyte-restricted knockout of the insulin receptor (CIRKO) have smaller hearts than wild-type (WT) controls. Four weeks after MTAB, WT and CIRKO mice had comparably increased LV systolic pressure, increased cardiac mass, and induction of mRNA for β-myosin heavy chain and atrial natriuretic factor. However, CIRKO hearts were more dilated, had depressed LV systolic function by echocardiography, and had greater interstitial fibrosis than WT mice. Expression of connective tissue growth factor was increased in banded CIRKO hearts compared with WT hearts. Thus lack of insulin signaling in the heart accelerates the transition to a more decompensated state during cardiac pressure overload. The use of the MTAB approach should facilitate the study of the pathophysiology and treatment of pressure-overload hypertrophy.


2009 ◽  
Vol 296 (5) ◽  
pp. H1625-H1632 ◽  
Author(s):  
Roberta Berni ◽  
Monia Savi ◽  
Leonardo Bocchi ◽  
Francesca Delucchi ◽  
Ezio Musso ◽  
...  

In a rat model of long-lasting pressure-overload hypertrophy, we investigated whether changes in the relative expression of myocardial actin isoforms are among the early signs of ventricular mechanical dysfunction before the transition toward decompensation. Forty-four rats with infrarenal aortic banding (AC rats) were studied. Hemodynamic parameters were measured 1 mo (AC1 group; n = 20) or 2 mo (AC2; n = 24) after aortic ligature. Then subgroups of AC1 and AC2 left ventricles (LV) were used to evaluate 1) LV anatomy and fibrosis (morphometry), 2) expression levels (immunoblotting) and spatial distribution (immunohistochemistry) of alpha-skeletal actin (α-SKA), alpha-cardiac actin (α-CA), and alpha-smooth muscle actin (α-SMA), and 3) cell mechanics and calcium transients in enzimatically isolated myocytes. Although the two AC groups exhibited a comparable degree of hypertrophy (+30% in LV mass; +20% in myocyte surface) and a similar increase in the amount of fibrosis compared with control animals (C group; n = 22), a worsening of LV mechanical performance was observed only in AC2 rats at both organ and cellular levels. Conversely, AC1 rats exhibited enhanced LV contractility and preserved cellular contractile behavior associated with increased calcium transients. Alpha-SKA expression was upregulated (+60%) in AC1. In AC2 ventricles, prolonged hypertension also induced a significant increase in α-SMA expression, mainly at the level of arterial vessels. No significant differences among groups were observed in α-CA expression. Our findings suggest that α-SKA expression regulation and wall remodeling of coronary arterioles participate in the development of impaired kinetics of contraction and relaxation in prolonged hypertension before the occurrence of marked histopathologic changes.


Sign in / Sign up

Export Citation Format

Share Document