scholarly journals Thrombospondin-1 regulates adiposity and metabolic dysfunction in diet-induced obesity enhancing adipose inflammation and stimulating adipocyte proliferation

2013 ◽  
Vol 305 (3) ◽  
pp. E439-E450 ◽  
Author(s):  
Ping Kong ◽  
Carlos Gonzalez-Quesada ◽  
Na Li ◽  
Michele Cavalera ◽  
Dong-Wook Lee ◽  
...  

As a typical matricellular protein, thrombospondin (TSP)-1, binds to the structural matrix and regulates cellular behavior by modulating growth factor and cytokine signaling. Obesity and diabetes are associated with marked upregulation of TSP-1 in adipose tissue. We hypothesized that endogenous TSP-1 may play an important role in the pathogenesis of diet-induced obesity and metabolic dysfunction. Accordingly, we examined the effects of TSP-1 gene disruption on weight gain, adiposity, and adipose tissue inflammation in mice receiving a high-fat diet (HFD: 60% fat, 20% carbohydrate) or a high-carbohydrate low-fat diet (HCLFD: 10% fat, 70% carbohydrate). HFD mice had significantly higher TSP-1 expression in perigonadal adipose tissue; TSP-1 was predominantly localized in the adipose interstitium. TSP-1 loss attenuated weight gain and fat accumulation in HFD and HCLFD groups. Compared with corresponding wild-type animals, TSP-1-null mice had decreased insulin levels but exhibited elevated free fatty acid and triglyceride levels, suggesting impaired fatty acid uptake. TSP-1 loss did not affect adipocyte size and had no effect on adipose vascular density. However, TSP-1-null mice exhibited attenuated tumor necrosis factor-α mRNA expression and reduced macrophage infiltration, suggesting a role for TSP-1 in mediating obesity-associated inflammation. In vitro, TSP-1 enhanced proliferation of 3T3-L1 preadipocytes but did not modulate inflammatory cytokine and chemokine synthesis. In conclusion, TSP-1 upregulation contributes to weight gain, adipose growth, and the pathogenesis of metabolic dysfunction. The effects of TSP-1 may involve stimulation of adipocyte proliferation, activation of inflammatory signaling, and facilitated fatty acid uptake by adipocytes.

2005 ◽  
Vol 288 (3) ◽  
pp. E547-E555 ◽  
Author(s):  
Ana Paola Uranga ◽  
James Levine ◽  
Michael Jensen

Oxidation and adipose tissue uptake of dietary fat can be measured by adding fatty acid tracers to meals. These studies were conducted to measure between-study variability of these types of experiments and assess whether dietary fatty acids are handled differently in the follicular vs. luteal phase of the menstrual cycle. Healthy normal-weight men ( n = 12) and women ( n = 12) participated in these studies, which were block randomized to control for study order, isotope ([3H]triolein vs. [14C]triolein), and menstrual cycle. Energy expenditure (indirect calorimetry), meal fatty acid oxidation, and meal fatty acid uptake into upper body and lower body subcutaneous fat (biopsies) 24 h after the experimental meal were measured. A greater portion of meal fatty acids was stored in upper body subcutaneous adipose tissue (24 ± 2 vs. 16 ± 2%, P < 0.005) and lower body fat (12 ± 1 vs. 7 ± 1%, P < 0.005) in women than in men. Meal fatty acid oxidation (3H2O generation) was greater in men than in women (52 ± 3 vs. 45 ± 2%, P = 0.04). Leg adipose tissue uptake of meal fatty acids was 15 ± 2% in the follicular phase of the menstrual cycle and 10 ± 1% in the luteal phase ( P = NS). Variance in meal fatty acid uptake was somewhat ( P = NS) greater in women than in men, although menstrual cycle factors did not contribute significantly. We conclude that leg uptake of dietary fat is slightly more variable in women than in men, but that there are no major effects of menstrual cycle on meal fatty acid disposal.


2014 ◽  
Vol 307 (4) ◽  
pp. E374-E383 ◽  
Author(s):  
Myriam Aouadi ◽  
Pranitha Vangala ◽  
Joseph C. Yawe ◽  
Michaela Tencerova ◽  
Sarah M. Nicoloro ◽  
...  

Proinflammatory pathways in adipose tissue macrophages (ATMs) can impair glucose tolerance in obesity, but ATMs may also be beneficial as repositories for excess lipid that adipocytes are unable to store. To test this hypothesis, we selectively targeted visceral ATMs in obese mice with siRNA against lipoprotein lipase (LPL), leaving macrophages within other organs unaffected. Selective silencing of ATM LPL decreased foam cell formation in visceral adipose tissue of obese mice, consistent with a reduced supply of fatty acids from VLDL hydrolysis. Unexpectedly, silencing LPL also decreased the expression of genes involved in fatty acid uptake (CD36) and esterification in ATMs. This deficit in fatty acid uptake capacity was associated with increased circulating serum free fatty acids. Importantly, ATM LPL silencing also caused a marked increase in circulating fatty acid-binding protein-4, an adipocyte-derived lipid chaperone previously reported to induce liver insulin resistance and glucose intolerance. Consistent with this concept, obese mice with LPL-depleted ATMs exhibited higher hepatic glucose production from pyruvate and glucose intolerance. Silencing CD36 in ATMs also promoted glucose intolerance. Taken together, the data indicate that LPL secreted by ATMs enhances their ability to sequester excess lipid in obese mice, promoting systemic glucose tolerance.


2019 ◽  
Vol 20 (6) ◽  
pp. 1462 ◽  
Author(s):  
Reem Atawia ◽  
Haroldo Toque ◽  
Mohamed Meghil ◽  
Tyler Benson ◽  
Nicole Yiew ◽  
...  

Visceral adipose tissue (VAT) inflammation and metabolic dysregulation are key components of obesity-induced metabolic disease. Upregulated arginase, a ureahydrolase enzyme with two isoforms (A1-cytosolic and A2-mitochondrial), is implicated in pathologies associated with obesity and diabetes. This study examined A2 involvement in obesity-associated metabolic and vascular disorders. WT and globally deleted A2(−/−) or A1(+/−) mice were fed either a high fat/high sucrose (HFHS) diet or normal diet (ND) for 16 weeks. Increases in body and VAT weight of HFHS-fed WT mice were abrogated in A2−/−, but not A1+/−, mice. Additionally, A2−/− HFHS-fed mice exhibited higher energy expenditure, lower blood glucose, and insulin levels compared to WT HFHS mice. VAT and adipocytes from WT HFHS fed mice showed greater A2 expression and adipocyte size and reduced expression of PGC-1α, PPAR-γ, and adiponectin. A2 deletion blunted these effects, increased levels of active AMPK-α, and upregulated genes involved in fatty acid metabolism. A2 deletion prevented HFHS-induced VAT collagen deposition and inflammation, which are involved in adipocyte metabolic dysfunction. Endothelium-dependent vasorelaxation, impaired by HFHS diet, was significantly preserved in A2−/− mice, but more prominently maintained in A1+/− mice. In summary, A2 is critically involved in HFHS-induced VAT inflammation and metabolic dysfunction.


2020 ◽  
Vol 124 (7) ◽  
pp. 668-680
Author(s):  
Xiaoping Jing ◽  
Jianwei Zhou ◽  
Allan Degen ◽  
Wenji Wang ◽  
Yamin Guo ◽  
...  

AbstractThis study aimed to gain insight into how adipose tissue of Tibetan sheep regulates energy homoeostasis to cope with low energy intake under the harsh environment of the Qinghai-Tibetan Plateau (QTP). We compared Tibetan and Small-tailed Han sheep (n 24 of each breed), all wethers and 1·5 years of age, which were each divided randomly into four groups and offered diets of different digestible energy (DE) densities: 8·21, 9·33, 10·45 and 11·57 MJ DE/kg DM. When the sheep lost body mass and were assumed to be in negative energy balance: (1) adipocyte diameter in subcutaneous adipose tissue was smaller and decreased to a greater extent in Tibetan than in Small-tailed Han sheep, but the opposite occurred in the visceral adipose tissue; (2) Tibetan sheep showed higher insulin receptor mRNA expression and lower concentrations of catabolic hormones than Small-tailed Han sheep and (3) Tibetan sheep had lower capacity for glucose and fatty acid uptake than Small-tailed Han sheep. Moreover, Tibetan sheep had lower AMPKα mRNA expression but higher mammalian target of rapamycin mRNA expression in the adipocytes than Small-tailed Han sheep. We concluded that Tibetan sheep had lower catabolism but higher anabolism in adipose tissue and reduced the capacity for glucose and fatty acid uptake to a greater extent than Small-tailed Han sheep to maintain energy homoeostasis when in negative energy balance. These responses provide Tibetan sheep with a high ability to cope with low energy intake and with the harsh environment of the QTP.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
T. J. Saari ◽  
J. Raiko ◽  
M. U-Din ◽  
T. Niemi ◽  
M. Taittonen ◽  
...  

Endocrinology ◽  
2013 ◽  
Vol 154 (11) ◽  
pp. 4126-4135 ◽  
Author(s):  
Oleg Varlamov ◽  
Michael P. Chu ◽  
Whitney K. McGee ◽  
Judy L. Cameron ◽  
Robert W. O'Rourke ◽  
...  

Previous studies in rodents and humans suggest that hyperandrogenemia causes white adipose tissue (WAT) dysfunction in females, although the underlying mechanisms are poorly understood. In light of the differences in the length of the ovarian cycle between humans and rodents, we used a nonhuman primate model to elucidate the effects of chronic hyperandrogenemia on WAT function in vivo. Female rhesus macaques implanted with testosterone capsules developed insulin resistance and altered leptin secretion on a high-fat, Western-style diet. In control visceral WAT, lipolysis and hormone-sensitive lipase expression were upregulated during the luteal phase compared with the early follicular (menses) phase of the ovarian cycle. Hyperandrogenemia attenuated elevated lipolysis and hormone-sensitive lipase activity in visceral WAT during the luteal phase but not during menses. Under control conditions, insulin-stimulated Akt and Erk activation and fatty acid uptake in WAT were not significantly affected by the ovarian cycle. In contrast, testosterone treatment preferentially increased fatty acid uptake and insulin signaling at menses. The fatty acid synthase and glucose transporter-4 genes were upregulated by testosterone during the luteal phase. In summary, this study reveals ovarian stage-specific fluctuations in adipocyte lipolysis and suggests that male sex hormones increase and female sex hormones decrease lipid storage in female WAT.


Diabetologia ◽  
2014 ◽  
Vol 58 (1) ◽  
pp. 158-164 ◽  
Author(s):  
Marco Bucci ◽  
Anna C. Karmi ◽  
Patricia Iozzo ◽  
Barbara A. Fielding ◽  
Antti Viljanen ◽  
...  

2004 ◽  
Vol 63 (1) ◽  
pp. 153-160 ◽  
Author(s):  
Christine M. Williams

Differences in whole-body lipid metabolism between men and women are indicated by lower-body fat accumulation in women but more marked accumulation of fat in the intra-abdominal visceral fat depots of men. Circulating blood lipid concentrations also show gender-related differences. These differences are most marked in premenopausal women, in whom total cholesterol, LDL-cholesterol and triacylglycerol concentrations are lower and HDL-cholesterol concentration is higher than in men. Tendency to accumulate body fat in intra-abdominal fat stores is linked to increased risk of CVD, metabolic syndrome, diabetes and other insulin-resistant states. Differential regional regulation of adipose tissue lipolysis and lipogenesis must underlie gender-related differences in the tendency to accumulate fat in specific fat depots. However, empirical data to support current hypotheses remain limited at the present time because of the demanding and specialist nature of the methods used to study adipose tissue metabolism in human subjects. In vitro and in vivo data show greater lipolytic sensitivity of abdominal subcutaneous fat and lesser lipolytic sensitivity of femoral and gluteal subcutaneous fat in women than in men. These differences appear to be due to fewer inhibitory α adrenergic receptors in abdominal regions and greater α adrenergic receptors in gluteal and femoral regions in women than in men. There do not appear to be major gender-related differences in rates of fatty acid uptake (lipogenesis) in different subcutaneous adipose tissue regions. In visceral fat rates of both lipolysis and lipogenesis appear to be greater in men than in women; higher rates of lipolysis may be due to fewer α adrenergic receptors in this fat depot in men. Fatty acid uptake into this depot in the postprandial period is approximately 7-fold higher in men than in women. Triacylglycerol concentrations appear to be a stronger cardiovascular risk factor in women than in men, with particular implications for cardiovascular risk in diabetic women. The increased triacylglycerol concentrations observed in women taking hormone-replacement therapy (HRT) may explain the paradoxical findings of increased rates of CVD in women taking HRT that have been reported from recent primary and secondary prevention trials of HRT.


Endocrinology ◽  
2021 ◽  
Author(s):  
Lei Zhang ◽  
Pavandeep Rai ◽  
Satomi Miwa ◽  
Mohd Shazli Draman ◽  
D Aled Rees ◽  
...  

Abstract Context Depot-specific expansion of orbital-adipose-tissue (OAT) in Graves’ Orbitopathy (GO, an autoimmune condition producing proptosis, visual impairment and reduced quality of life) is associated with fatty-acid (FA) uptake-driven adipogenesis in preadipocytes/fibroblasts (PFs). Objective A role for mitochondria in OAT-adipogenesis in GO. Design, Setting, Participants Confluent PFs from healthy OAT (OAT-H), OAT from GO (OAT-GO) and white-adipose-tissue in culture-medium compared with culture-medium containing a mixed hormonal-cocktail as adipogenic-medium (ADM); or culture-medium containing FA-supplementation, oleate:palmitate:linoleate (45:30:25%) with/without different concentration of mitochondrial bio-substrate ADP/GDP, AICAR (adenosine-analog) or inhibitor oligomycin-A for 17 days. Main outcome measures Oil-Red-O staining and foci-count of differentiated adipocytes for in-vitro adipogenesis; flow-cytometry, relative-QPCR, MTS-assay/10 6 cells, total cellular-ATP detection kit and Seahorse-XFe96-Analyzer for mitochondria and OXPHOS/Glycolysis-ATP production analysis. Results During early adipogenesis before adipocyte formation (day-0,4&7), we observed OAT-specific cellular ATP-production via mitochondrial-OXPHOS in PFs from both OAT-H/OAT-GO, and substantially disrupted OXPHOS-ATP/Glycolysis-ATP production in PFs from OAT-GO, e.g. 40% reduction in OXPHOS-ATP and trend-increased Glycolysis-ATP production on day-4&7 compared with day-0, which contrasted with the stable levels in OAT-H.FA-supplementation in culture-medium triggered adipogenesis in PFs from both OAT-H/OAT-GO, which was substantially enhanced by 1mM GDP reaching 7-18% of ADM-adipogenesis. The FA-uptake-driven adipogenesis was diminished by oligomycin-A but unaffected by treatment with ADP or AICAR. Furthermore, we observed significant positive correlation between FA-uptake-driven adipogenesis by GDP and the ratios of OXPHOS-ATP/Glycolysis-ATP through adipogenesis of PFs from OAT-GO. Conclusions Our study confirmed that FA-uptake can drive OAT-adipogenesis and revealed a fundamental role for mitochondria-OXPHOS in GO development, which provides potential for therapeutic interventions.


Sign in / Sign up

Export Citation Format

Share Document