scholarly journals MicroRNA-21 ablation exacerbates aldosterone-mediated cardiac injury, remodeling, and dysfunction

2018 ◽  
Vol 315 (6) ◽  
pp. E1154-E1167 ◽  
Author(s):  
Maryam Syed ◽  
Jana P. Ball ◽  
Keisa W. Mathis ◽  
Michael E. Hall ◽  
Michael J. Ryan ◽  
...  

Primary aldosteronism is characterized by excess aldosterone secretion by the adrenal gland independent of the renin-angiotensin system and accounts for ~10% of hypertensive patients. Excess aldosterone causes cardiac hypertrophy, fibrosis, inflammation, and hypertension. The molecular mechanisms that trigger the onset and progression of aldosterone-mediated cardiac injury remain incompletely understood. MicroRNAs (miRNAs) are endogenous, small, noncoding RNAs that have been implicated in multiple cardiac pathologies; however, their regulation and role in aldosterone-mediated cardiac injury and dysfunction remains mostly unknown. We previously reported that microRNA-21 (miR-21) is the most upregulated miRNA by excess aldosterone in the left ventricle in a rat experimental model of primary aldosteronism. To elucidate the role of miR-21 in aldosterone-mediated cardiac injury and dysfunction, miR-21 knockout mice and their wild-type littermates were treated with aldosterone infusion and salt in the drinking water for 2 or 8 wk. miR-21 genetic ablation exacerbated aldosterone/salt-mediated cardiac hypertrophy and cardiomyocyte cross-sectional area. Furthermore, miR-21 genetic ablation increased the cardiac expression of fibrosis and inflammation markers and fetal gene program. miR-21 genetic ablation increased aldosterone/salt-mediated cardiac dysfunction but did not affect aldosterone/salt-mediated hypertension. miR-21 target gene Sprouty 2 may be implicated in the cardiac effects of miR-21 genetic ablation. Our study shows that miR-21 genetic ablation exacerbates aldosterone/salt-mediated cardiac hypertrophy, injury, and dysfunction blood pressure independently. These results suggest that miR-21 plays a protective role in the cardiac pathology triggered by excess aldosterone. Furthermore, miR-21 supplementation may be a novel therapeutic approach to abolish or mitigate excess aldosterone-mediated cardiovascular deleterious effects in primary aldosteronism.

Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Francisco J Rios ◽  
ZhiGuo Zou ◽  
Karla B Neves ◽  
Sarah S Nichol ◽  
Livia L Camargo ◽  
...  

TRPM7 has cation channel and kinase properties, is permeable to Mg 2+ , Ca 2+ , and Zn 2+ and is protective in the cardiovascular system. Hyperaldosteronism, which induces hypertension and cardiovascular fibrosis, is associated with Mg 2+ wasting. Here we questioned whether TRPM7 plays a role in aldosterone- induced hypertension and fibrosis and whether it influences cation regulation. Wild-type (WT) and TRPM7-deficient (M7+/Δ) mice were treated with aldosterone (600μg/Kg/day) and/or 1% NaCl (drinking water) (aldo, salt or aldo-salt) for 4 weeks. Blood pressure (BP) was evaluated by tail-cuff. Vessel structure was assessed by pressure myography. Molecular mechanisms were investigated in cardiac fibroblasts (CF) from WT and M7+/Δ mice. Protein expression was assessed by western-blot and histology. M7+/Δ mice exhibited reduced TRPM7 expression (30%) and phosphorylation (62%), levels that were recapitulated in WT aldo-salt mice. M7+/Δ exhibited increased BP by aldo, salt and aldo-salt (135-140mmHg) vs M7+/Δ-veh (117mmHg) (p<0.05), whereas in WT, BP was increased only by aldo-salt (134mmHg). Mesenteric resistance arteries from WT aldo-salt exhibited increased wall/lumen ratio (80%) and reduced internal diameter (15%) whereas vessels from M7+/Δ exhibited thinner walls by reducing cross-sectional area (35%) and increased internal diameter (23%) after aldo-salt. Aldo-salt induced greater collagen deposition in hearts (68%), kidneys (126%) and aortas (45%) from M7+/Δ vs WT. Hearts from M7+/Δ veh exhibited increased TGFβ, IL-11 and IL-6 (1.9-fold), p-Smad3 and p-Stat1 (1.5-fold) whereas in WT these effects were only found after aldo-salt. Cardiac expression of protein phosphatase magnesium-dependent 1A (PPM1A), a Mg 2+ -dependent phosphatase, was reduced (3-fold) only in M7+/Δ mice. M7+/Δ CF showed reduced proliferation (30%) and PPM1A (4-fold) and increased expression of TGFβ, IL-11 and IL-6 (2-3-fold), activation of Stat1 (2-fold), Smad3 (9-fold) and ERK1/2 (8-fold) compared with WT. Mg 2+ supplementation normalized cell proliferation and reduced protein phosphorylation in M7+/Δ CF (p<0.05). Our findings indicate a protective role of TRPM7 in aldosterone-salt induced cardiovascular injury through Mg 2+ -dependent mechanisms.


2017 ◽  
Vol 44 (6) ◽  
pp. 2212-2227 ◽  
Author(s):  
Di Fan ◽  
Zheng Yang ◽  
Fang-yuan Liu ◽  
Ya-Ge Jin ◽  
Ning Zhang ◽  
...  

Background/Aims: Cardiac remodeling is associated with oxidative stress. Sesamin, a well-known antioxidant from sesamin seeds, have been used extensively as traditional health foods. However, there is little known about the effect of sesamin on cardiac remodeling. Therefore, the present study aimed to determine whether sesamin could protect against cardiac remodeling and to clarify potential molecular mechanisms. Methods: The mice were subjected to either transverse aortic constriction (TAC) or sham surgery (control group). Beginning one week after surgery, the mice were oral gavage treated with sesamin (100mg·kg-1·day-1) or vehicle for 3 weeks. Cardiac hypertrophy was assessed by echocardiographic parameters, histological analyses and hypertrophic markers. Results: Sesamin alleviated cardiac hypertrophy, inhibited fibrosis and attenuated the inflammatory response. The increased production of reactive oxygen species, the activation of ERK1/2-dependent nuclear factor-κB and the increased level of Smad2 phosphorylation were observed in cardiac remolding model that were treated with sesamin. Furthermore, TAC induced alteration of Sirt3 and SOD2 was normalized by sesamin treatment. Finally, a selective Sirt3 inhibitor 3-TYP blocks all the protective role of sesamin, suggesting that a Sirt3-dependent effect of sesamin on cardiac remodeling. Conclusion: Sesamin improves cardiac function and prevents the development of cardiac hypertrophy via Sirt3/ROS pathway. Our results suggest the protective effect of sesamin on cardiac remolding.


1999 ◽  
Vol 83 (12) ◽  
pp. 53-57 ◽  
Author(s):  
Tsutomu Yamazaki ◽  
Issei Komuro ◽  
Yoshio Yazaki

2021 ◽  
Vol 66 (4) ◽  
pp. 273-283
Author(s):  
Zhousheng Jin ◽  
Fangfang Xia ◽  
Jiaojiao Dong ◽  
Tingting Lin ◽  
Yaoyao Cai ◽  
...  

Glucocorticoid excess often causes a variety of cardiovascular complications, including hypertension, atherosclerosis, and cardiac hypertrophy. To abrogate its cardiac side effects, it is necessary to fully disclose the pathophysiological role of glucocorticoid in cardiac remodelling. Previous clinical and experimental studies have found that omentin-1, one of the adipokines, has beneficial effects in cardiovascular diseases, and is closely associated with metabolic disorders. However, there is no evidence to address the potential role of omentin-1 in glucocorticoid excess-induced cardiac injuries. To uncover the links, the present study utilized rat model with glucocorticoid-induced cardiac injuries and clinical patients with abnormal cardiac function. Chronic administration of glucocorticoid excess reduced rat serum omentin-1 concentration, which closely correlated with cardiac functional parameters. Intravenous administration of adeno-associated virus encoding omentin-1 upregulated the circulating omentin-1 level and attenuated glucocorticoid excess-induced cardiac hypertrophy and functional disorders. Overexpression of omentin-1 also improved cardiac mitochondrial function, including the reduction of lipid deposits, induction of mitochondrial biogenesis, and enhanced mitochondrial activities. Mechanistically, omentin-1 phosphorylated and activated the GSK3β pathway in the heart. From a study of 28 patients with Cushing’s syndrome and 23 healthy subjects, the plasma level of glucocorticoid was negatively correlated with omentin-1, and was positively associated with cardiac ejection fraction and fractional shortening. Collectively, the present study provided a novel role of omentin-1 in glucocorticoid excess-induced cardiac injuries and found that the omentin-1/GSK3β pathway was a potential therapeutic target in combating the side effects of glucocorticoid.


2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Roberta da Silva Filha ◽  
Sérgio Veloso Brant Pinheiro ◽  
Thiago Macedo e Cordeiro ◽  
Victor Feracin ◽  
Érica Leandro Marciano Vieira ◽  
...  

AbstractIntroduction: Renin angiotensin system (RAS) plays a role in idiopathic nephrotic syndrome (INS). Most studies investigated only the classical RAS axis. Therefore, the aims of the present study were to evaluate urinary levels of RAS molecules related to classical and to counter-regulatory axes in pediatric patients with INS, to compare the measurements with levels in healthy controls and to search for associations with inflammatory molecules, proteinuria and disease treatment. Subjects and methods: This cross-sectional study included 31 patients with INS and 19 healthy controls, matched for age and sex. Patients and controls were submitted to urine collection for measurement of RAS molecules [Ang II, Ang-(1-7), ACE and ACE2] by enzyme immunoassay and cytokines by Cytometric Bead Array. Findings in INS patients were compared according to proteinuria: absent (<150 mg/dl, n = 15) and present (≥150 mg/dl, n = 16). Results: In comparison to controls, INS patients had increased Ang II, Ang-(1-7) and ACE, levels while ACE2 was reduced. INS patients with proteinuria had lower levels of ACE2 than those without proteinuria. ACE2 levels were negatively correlated with 24-h-proteinuria. Urinary concentrations of MCP-1/CCL2 were significantly higher in INS patients, positively correlated with Ang II and negatively with Ang-(1-7). ACE2 concentrations were negatively correlated with IP-10/CXCL-10 levels, which, in turn, were positively correlated with 24-h-proteinuria. Conclusion: INS patients exhibited changes in RAS molecules and in chemokines. Proteinuria was associated with low levels of ACE2 and high levels of inflammatory molecules.


2019 ◽  
Vol 46 (1) ◽  
pp. 69 ◽  
Author(s):  
Nibedita Chakraborty ◽  
Jolly Basak

Vigna mungo (L.)Hepper is an economically important leguminous crop in south-east Asia. However, its production is severely affected by Mungbean yellow mosaic India virus (MYMIV). It is well established that methyl jasmonate (MeJA) is effective in inducing resistance against pathogens in several plants. To assess the role of MeJA in developing MYMIV tolerance in V. mungo, we analysed time-dependent biochemical and molecular responses of MYMIV susceptible V. mungo after exogenous application of different MeJA concentrations, followed by MYMIV infection. Our analysis revealed that exogenous application of different concentrations of MeJA resulted in decreased levels of malondialdehyde with higher membrane stability index values in MYMIV susceptible V. mungo, suggesting the protective role of MeJA through restoring the membrane stability. Moreover, the level of expression of different antioxidative enzymes revealed that exogenous MeJA is also very effective in ROS homeostasis maintenance. Enhanced expressions of the defence marker genes lipoxygenase and phenylalanine ammonia-lyase and the reduced expression of the MYMIV coat-protein encoding gene in all MeJA treated plants post MYMIV infection revealed that exogenous application of MeJA is effective for MYMIV tolerance in V. mungo. Our findings provide new insights into the physiological and molecular mechanisms of MYMIV tolerance in Vigna induced by MeJA.


2020 ◽  
Vol 134 (22) ◽  
pp. 3047-3062
Author(s):  
Koichi Yamamoto ◽  
Hikari Takeshita ◽  
Hiromi Rakugi

Abstract Angiotensin converting enzyme-2 (ACE2) is a multifunctional transmembrane protein recently recognised as the entry receptor of the virus causing COVID-19. In the renin–angiotensin system (RAS), ACE2 cleaves angiotensin II (Ang II) into angiotensin 1-7 (Ang 1-7), which is considered to exert cellular responses to counteract the activation of the RAS primarily through a receptor, Mas, in multiple organs including skeletal muscle. Previous studies have provided abundant evidence suggesting that Ang 1-7 modulates multiple signalling pathways leading to protection from pathological muscle remodelling and muscle insulin resistance. In contrast, there is relatively little evidence to support the protective role of ACE2 in skeletal muscle. The potential contribution of endogenous ACE2 to the regulation of Ang 1-7-mediated protection of these muscle pathologies is discussed in this review. Recent studies have suggested that ACE2 protects against ageing-associated muscle wasting (sarcopenia) through its function to modulate molecules outside of the RAS. Thus, the potential association of sarcopenia with ACE2 and the associated molecules outside of RAS is also presented herein. Further, we introduce the transcriptional regulation of muscle ACE2 by drugs or exercise, and briefly discuss the potential role of ACE2 in the development of COVID-19.


Author(s):  
Pedro Henrique Abreu da Silva ◽  
Andressa Santos Garcia ◽  
Fábio Aguiar Alves ◽  
André Luis Souza dos Santos ◽  
Cátia Lacerda Sodré

: The COVID-19 pandemic turned the SARS-CoV-2 into the main target of scientific research all around the world. Many advances have already been made, but there is still a long way to go to solve the molecular mechanisms related to the process of the SARS-CoV-2 infection, as well as the particularities of the disease, its course and the complex host-pathogen relationships. However, a lot has been theorized and associated with COVID-19, like the worst prognosis of the disease among individuals with some comorbidities, like diabetes mellitus. In this perspective, diabetic patients are repeatedly associated with more severe cases of COVID-19 when compared to non-diabetic patients. Even though ACE2 (angiotensin-converting enzyme 2) was recognized as the host cell receptor for both binding and entering of SARS-CoV-2 particles, it was also pointed out that this enzyme plays an important protective role against pulmonary damage. Therefore, paradoxically as it may seem, the low baseline level of this receptor in people with diabetes is directly linked to a more expressive loss of ACE2 protective effect, which could be one of the possible factors for the worst prognosis of COVID-19. Still, COVID-19 may also have a diabetogenic effect. From this point of view, the main topics that will be highlighted are (i) the mechanism of the viral entry, with special attention to the cellular receptor (ACE2) and the viral binding protein (spike), (ii) the relationship among the renin-angiotensin system, the infection process and the patients' prognosis, (iii) the glucose control and the medicines used in this event, and (iv) a brief analysis on diabetes triggered by COVID-19.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Stephanie L. Gaw ◽  
Bethann S. Hromatka ◽  
Sadiki Ngeleza ◽  
Sirirak Buarpung ◽  
Nida Ozarslan ◽  
...  

Background. Placental malaria is a leading global cause of low birth weight neonates, especially in first-time mothers. To better understand the role of innate immunity in placental malaria, we investigated the relationships between histopathological markers of placental malaria, fetal and maternal macrophage responses, and perinatal outcomes in a cross-sectional case control study of pregnant women presenting with symptomatic malaria at the time of delivery. Results. Primigravidas showed increased hemozoin deposition in placental villi (p=0.02), syncytiotrophoblasts (p=0.01), and fetal Hofbauer cells (p=0.01). The percentage of hemozoin-positive villi negatively correlated with infant birth weight (regression coefficient [b] = -0.03 kg decrease in birth weight per % increase in hemozoin-positive villi, p=0.035). Malaria-infected placentas showed a twofold increase in Hofbauer cells (p<0.001) and maternal macrophages (p<0.001). Placental malaria was associated with a threefold increase in the percentage of M2 maternal macrophages (19.2% vs 6.4%, p=0.01). Primigravidas showed a significant decrease in the Hofbauer cell M2-percentage in placental malaria (92.7% vs. 97.0%, p=0.04), which was predictive of infant birth weight (b=0.08 kg increase in birth weight per % increase in M2 Hofbauer cells, p=0.001). There was no association between maternal macrophage response and infant birth weights. Conclusions. Placentas with malarial infection had increased numbers of fetal Hofbauer cells in the villous stroma and maternal macrophages in the intervillous space. In primigravidas, decreased anti-inflammatory M2-type Hofbauer cells were predictive of lower birth weight. M2-type maternal macrophages were increased in placental malaria, but there was no association with gravidity or birth weight. These results suggested a protective role of M2 Hofbauer cells in fetal growth restriction.


Sign in / Sign up

Export Citation Format

Share Document