MKR mice are resistant to the metabolic actions of both insulin and adiponectin: discordance between insulin resistance and adiponectin responsiveness

2006 ◽  
Vol 291 (2) ◽  
pp. E298-E305 ◽  
Author(s):  
Chul-Hee Kim ◽  
Patricia Pennisi ◽  
Hong Zhao ◽  
Shoshana Yakar ◽  
Jeanne B. Kaufman ◽  
...  

Most rodent models of insulin resistance are accompanied by decreased circulating adiponectin levels. Adiponectin treatment improves the metabolic phenotype by increasing fatty acid oxidation in skeletal muscle and suppressing hepatic glucose production. Muscle IGF-I receptor (IGF-IR)-lysine-arginine (MKR) mice expressing dominant-negative mutant IGF-IRs in skeletal muscle are diabetic with insulin resistance in muscle, liver, and adipose tissue. Adiponectin levels are elevated in MKR mice, suggesting an unusual discordance between insulin resistance and adiponectin responsiveness. Therefore, we investigated the metabolic actions of adiponectin in MKR mice. MKR and ob/ob mice were treated both acutely (28 μg/g) and chronically (for 2 wk) with full-length adiponectin. Acute hypoglycemic effects of adiponectin were evident only in ob/ob mice but not in MKR mice. Chronic adiponectin treatment significantly improved both insulin sensitivity and glucose tolerance in ob/ob but not in MKR mice. Adiponectin receptor mRNA levels and adiponectin-stimulated phosphorylation of AMPK in skeletal muscle and liver were similar among MKR, wild-type, and ob/ob mice. Thus MKR mice are adiponectin resistant despite normal expression of adiponectin receptors and normal AMPK phosphorylation in muscle and liver. MKR mice may be a useful model for dissecting relationships between insulin resistance and adiponectin action in regulation of glucose homeostasis.

2017 ◽  
Vol 59 (4) ◽  
pp. 339-350 ◽  
Author(s):  
Penny Ahlstrom ◽  
Esther Rai ◽  
Suharto Chakma ◽  
Hee Ho Cho ◽  
Palanivel Rengasamy ◽  
...  

Skeletal muscle insulin resistance is known to play an important role in the pathogenesis of diabetes, and one potential causative cellular mechanism is endoplasmic reticulum (ER) stress. Adiponectin mediates anti-diabetic effects via direct metabolic actions and by improving insulin sensitivity, and we recently demonstrated an important role in stimulation of autophagy by adiponectin. However, there is limited knowledge on crosstalk between autophagy and ER stress in skeletal muscle and in particular how they are regulated by adiponectin. Here, we utilized the model of high insulin/glucose (HIHG)-induced insulin resistance, determined by measuring Akt phosphorylation (T308 and S473) and glucose uptake in L6 skeletal muscle cells. HIHG reduced autophagic flux measured by LC3 and p62 Western blotting and tandem fluorescent RFP/GFP-LC3 immunofluorescence (IF). HIHG also induced ER stress assessed by thioflavin T/KDEL IF, pIRE1, pPERK, peIF2α and ATF6 Western blotting and induction of a GRP78-mCherry reporter. Induction of autophagy by adiponectin or rapamycin attenuated HIHG-induced ER stress and improved insulin sensitivity. The functional significance of enhanced autophagy was validated by demonstrating a lack of improved insulin sensitivity in response to adiponectin in autophagy-deficient cells generated by overexpression of dominant negative mutant of Atg5. In summary, adiponectin-induced autophagy in skeletal muscle cells alleviated HIHG-induced ER stress and insulin resistance.


2020 ◽  
Vol 318 (1) ◽  
pp. C215-C224 ◽  
Author(s):  
Joaquin M. Muriel ◽  
Andrea O’Neill ◽  
Jaclyn P. Kerr ◽  
Emily Kleinhans-Welte ◽  
Richard M. Lovering ◽  
...  

Intermediate filaments (IFs) contribute to force transmission, cellular integrity, and signaling in skeletal muscle. We previously identified keratin 19 (Krt19) as a muscle IF protein. We now report the presence of a second type I muscle keratin, Krt18. Krt18 mRNA levels are about half those for Krt19 and only 1:1,000th those for desmin; the protein was nevertheless detectable in immunoblots. Muscle function, measured by maximal isometric force in vivo, was moderately compromised in Krt18-knockout ( Krt18-KO) or dominant-negative mutant mice ( Krt18 DN), but structure was unaltered. Exogenous Krt18, introduced by electroporation, was localized in a reticulum around the contractile apparatus in wild-type muscle and to a lesser extent in muscle lacking Krt19 or desmin or both proteins. Exogenous Krt19, which was either reticular or aggregated in controls, became reticular more frequently in Krt19-null than in Krt18-null, desmin-null, or double-null muscles. Desmin was assembled into the reticulum normally in all genotypes. Notably, all three IF proteins appeared in overlapping reticular structures. We assessed the effect of Krt18 on susceptibility to injury in vivo by electroporating siRNA into tibialis anterior (TA) muscles of control and Krt19-KO mice and testing 2 wk later. Results showed a 33% strength deficit (reduction in maximal torque after injury) compared with siRNA-treated controls. Conversely, electroporation of siRNA to Krt19 into Krt18-null TA yielded a strength deficit of 18% after injury compared with controls. Our results suggest that Krt18 plays a complementary role to Krt19 in skeletal muscle in both assembling keratin-based filaments and transducing contractile force.


2006 ◽  
Vol 291 (3) ◽  
pp. E536-E543 ◽  
Author(s):  
Chaodong Wu ◽  
Salmaan A. Khan ◽  
Li-Jen Peng ◽  
Honggui Li ◽  
Steven G. Carmella ◽  
...  

Hepatic insulin resistance is one of the characteristics of type 2 diabetes and contributes to the development of hyperglycemia. How changes in hepatic glucose flux lead to insulin resistance is not clearly defined. We determined the effects of decreasing the levels of hepatic fructose 2,6-bisphosphate (F26P2), a key regulator of glucose metabolism, on hepatic glucose flux in the normal 129J mice. Upon adenoviral overexpression of a kinase activity-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, the enzyme that determines F26P2 level, hepatic F26P2 levels were decreased twofold compared with those of control virus-treated mice in basal state. In addition, under hyperinsulinemic conditions, hepatic F26P2 levels were much lower than those of the control. The decrease in F26P2 leads to the elevation of basal and insulin-suppressed hepatic glucose production. Also, the efficiency of insulin to suppress hepatic glucose production was decreased (63.3 vs. 95.5% suppression of the control). At the molecular level, a decrease in insulin-stimulated Akt phosphorylation was consistent with hepatic insulin resistance. In the low hepatic F26P2 states, increases in both gluconeogenesis and glycogenolysis in the liver are responsible for elevations of hepatic glucose production and thereby contribute to the development of hyperglycemia. Additionally, the increased hepatic gluconeogenesis was associated with the elevated mRNA levels of peroxisome proliferator-activated receptor-γ coactivator-1α and phospho enolpyruvate carboxykinase. This study provides the first in vivo demonstration showing that decreasing hepatic F26P2 levels leads to increased gluconeogenesis in the liver. Taken together, the present study demonstrates that perturbation of glucose flux in the liver plays a predominant role in the development of a diabetic phenotype, as characterized by hepatic insulin resistance.


2004 ◽  
Vol 279 (44) ◽  
pp. 45803-45809 ◽  
Author(s):  
Yoshihisa Nakatani ◽  
Hideaki Kaneto ◽  
Dan Kawamori ◽  
Masahiro Hatazaki ◽  
Takeshi Miyatsuka ◽  
...  

The c-Jun N-terminal kinase (JNK) pathway is known to be activated under diabetic conditions and to possibly be involved in the progression of insulin resistance. In this study, we examined the effects of modulation of the JNK pathway in liver on insulin resistance and glucose tolerance. Overexpression of dominant-negative type JNK in the liver of obese diabetic mice dramatically improved insulin resistance and markedly decreased blood glucose levels. Conversely, expression of wild type JNK in the liver of normal mice decreased insulin sensitivity. The phosphorylation state of crucial molecules for insulin signaling was altered upon modification of the JNK pathway. Furthermore, suppression of the JNK pathway resulted in a dramatic decrease in the expression levels of the key gluconeogenic enzymes, and endogenous hepatic glucose production was also greatly reduced. Similar effects were observed in high fat, high sucrose diet-induced diabetic mice. Taken together, these findings suggest that suppression of the JNK pathway in liver exerts greatly beneficial effects on insulin resistance status and glucose tolerance in both genetic and dietary models of diabetes.


Endocrinology ◽  
2004 ◽  
Vol 145 (10) ◽  
pp. 4667-4676 ◽  
Author(s):  
Lisa Héron-Milhavet ◽  
Martin Haluzik ◽  
Shoshana Yakar ◽  
Oksana Gavrilova ◽  
Stephanie Pack ◽  
...  

Abstract Insulin resistance is one of the primary characteristics of type 2 diabetes. Mice overexpressing a dominant-negative IGF-I receptor specifically in muscle (MKR mice) demonstrate severe insulin resistance with high levels of serum and tissue lipids and eventually develop type 2 diabetes at 5–6 wk of age. To determine whether lipotoxicity plays a role in the progression of the disease, we crossed MKR mice with mice overexpressing a fatty acid translocase, CD36, in skeletal muscle. The double-transgenic MKR/CD36 mice showed normalization of the hyperglycemia and the hyperinsulinemia as well as a marked improvement in liver insulin sensitivity. The MKR/CD36 mice also exhibited normal rates of fatty acid oxidation in skeletal muscle when compared with the decreased rate of fatty acid oxidation in MKR. With the reduction in insulin resistance, β-cell function returned to normal. These and other results suggest that the insulin resistance in the MKR mice is associated with increased muscle triglycerides levels and that whole-body insulin resistance can be, at least partially, reversed in association with a reduction in muscle triglycerides levels, although the mechanisms are yet to be determined.


Endocrinology ◽  
2002 ◽  
Vol 143 (7) ◽  
pp. 2486-2490 ◽  
Author(s):  
Robert H. Lane ◽  
Nicole K. MacLennan ◽  
Jennifer L. Hsu ◽  
Sara M. Janke ◽  
Tho D. Pham

Abstract Uteroplacental insufficiency and subsequent intrauterine growth retardation (IUGR) increase the risk of type 2 diabetes in humans and rats. Unsuppressed endogenous hepatic glucose production is a common component of the insulin resistance associated with type 2 diabetes. Peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) mediates hepatic glucose production by controlling mRNA levels of glucose-6-phosphatase (G-6-Pase), phosphoenolpyruvate carboxykinase (PEPCK), and fructose-1,6-bisphosphatase (FBPase). We therefore hypothesized that gene expression of PGC-1 would be increased in juvenile IUGR rat livers, and this increase would directly correlate with hepatic mRNA levels of PEPCK, G-6-Pase, and FBPase, but not glucokinase. We found that IUGR hepatic PGC-1 protein levels were increased to 230 ± 32% and 310 ± 47% of control values at d 0 and d 21 of life, respectively. Similarly, IUGR hepatic PGC-1 mRNA levels were significantly elevated at both ages. Concurrent with the increased PGC-1 gene expression, IUGR hepatic mRNA levels of G-6-Pase, PEPCK, and FBPase were also significantly increased, whereas glucokinase mRNA levels were significantly decreased. These data suggest that increased PGC-1 expression and subsequent hepatic glucose production contribute to the insulin resistance observed in the IUGR juvenile rat.


Endocrinology ◽  
2006 ◽  
Vol 147 (5) ◽  
pp. 2077-2085 ◽  
Author(s):  
Matthew J. Watt ◽  
Andrea Hevener ◽  
Graeme I. Lancaster ◽  
Mark A. Febbraio

Ciliary neurotrophic factor (CNTF) is a member of the gp130 receptor cytokine family recently identified as an antiobesity agent in rodents and humans by mechanisms that remain unclear. We investigated the impact of acute CNTF treatment on insulin action in the presence of lipid oversupply. To avoid confounding effects of long-term high-fat feeding or genetic manipulation on whole-body insulin sensitivity, we performed a 2-h Intralipid infusion (20% heparinized Intralipid) with or without recombinant CNTF pretreatment (Axokine 0.3 mg/kg), followed by a 2-h hyperinsulinemic-euglycemic clamp (12 mU/kg·min) in fasted, male Wistar rats. Acute Intralipid infusion increased plasma free fatty acid levels from 1.0 ± 0.1 to 2.5 ± 0.3 mm, which subsequently caused reductions in skeletal muscle (insulin-stimulated glucose disposal rate) and liver (hepatic glucose production) insulin sensitivity by 30 and 45%, respectively. CNTF pretreatment completely prevented the lipid-mediated reduction in insulin-stimulated glucose disposal rate and the blunted suppression of hepatic glucose production by insulin. Although lipid infusion increased triacylglycerol and ceramide accumulation and phosphorylation of mixed linage kinase 3 and c-Jun N-terminal kinase 1 in skeletal muscle, CNTF pretreatment prevented these lipid-induced effects. Alterations in hepatic and muscle insulin signal transduction as well as phosphorylation of c-Jun N-terminal kinase 1/2 paralleled alterations in insulin sensitivity. These data support the use of CNTF as a potential therapeutic means to combat lipid-induced insulin resistance.


2020 ◽  
Vol 117 (51) ◽  
pp. 32584-32593
Author(s):  
Xiruo Li ◽  
Dongyan Zhang ◽  
Daniel F. Vatner ◽  
Leigh Goedeke ◽  
Sandro M. Hirabara ◽  
...  

Adiponectin has emerged as a potential therapy for type 2 diabetes mellitus, but the molecular mechanism by which adiponectin reverses insulin resistance remains unclear. Two weeks of globular adiponectin (gAcrp30) treatment reduced fasting plasma glucose, triglyceride (TAG), and insulin concentrations and reversed whole-body insulin resistance, which could be attributed to both improved insulin-mediated suppression of endogenous glucose production and increased insulin-stimulated glucose uptake in muscle and adipose tissues. These improvements in liver and muscle sensitivity were associated with ∼50% reductions in liver and muscle TAG and plasma membrane (PM)-associated diacylglycerol (DAG) content and occurred independent of reductions in total ceramide content. Reductions of PM DAG content in liver and skeletal muscle were associated with reduced PKCε translocation in liver and reduced PKCθ and PKCε translocation in skeletal muscle resulting in increased insulin-stimulated insulin receptor tyrosine1162 phosphorylation, IRS-1/IRS-2–associated PI3-kinase activity, and Akt-serine phosphorylation. Both gAcrp30 and full-length adiponectin (Acrp30) treatment increased eNOS/AMPK activation in muscle and muscle fatty acid oxidation. gAcrp30 and Acrp30 infusions also increased TAG uptake in epididymal white adipose tissue (eWAT), which could be attributed to increased lipoprotein lipase (LPL) activity. These data suggest that adiponectin and adiponectin-related molecules reverse lipid-induced liver and muscle insulin resistance by reducing ectopic lipid storage in these organs, resulting in decreased plasma membranesn-1,2-DAG–induced nPKC activity and increased insulin signaling. Adiponectin mediates these effects by both promoting the storage of TAG in eWAT likely through stimulation of LPL as well as by stimulation of AMPK in muscle resulting in increased muscle fat oxidation.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1066
Author(s):  
Daniel González-Hedström ◽  
María de la Fuente-Fernández ◽  
Teresa Priego ◽  
Ana Isabel Martín ◽  
Sara Amor ◽  
...  

Olive-derived products, such as virgin olive oil (EVOO) and/or olive leaf extracts (OLE), exert anti-inflammatory, insulin-sensitizing and antihypertensive properties and may be useful for stabilizing omega 3 fatty acids (n-3 PUFA) due to their high content in antioxidant compounds. In this study, the addition of OLE 4:0.15 (w/w) to a mixture of algae oil (AO) rich in n-3 PUFA and EVOO (25:75, w/w) prevents peroxides formation after 12 months of storage at 30 °C. Furthermore, the treatment with the oil mixture (2.5 mL/Kg) and OLE (100 mg/Kg) for 24 month old Wistar rats in 21 days improved the lipid profile, increased the HOMA-IR and decreased the serum levels of miRNAs 21 and 146a. Treatment with this new nutraceutical also prevented age-induced insulin resistance in the liver, gastrocnemius and visceral adipose tissue by decreasing the mRNA levels of inflammatory and oxidative stress markers. Oil mixture + OLE also attenuated the age-induced alterations in vascular function and prevented muscle loss by decreasing the expression of sarcopenia-related markers. In conclusion, treatment with a new nutraceutical based on a mixture of EVOO, AO and OLE is a useful strategy for improving the stability of n-3 PUFA in the final product and to attenuate the cardiometabolic and muscular disorders associated with aging.


Endocrinology ◽  
2011 ◽  
Vol 152 (10) ◽  
pp. 3622-3627 ◽  
Author(s):  
Sanjeev Choudhary ◽  
Sandeep Sinha ◽  
Yanhua Zhao ◽  
Srijita Banerjee ◽  
Padma Sathyanarayana ◽  
...  

Enhanced levels of nuclear factor (NF)-κB-inducing kinase (NIK), an upstream kinase in the NF-κB pathway, have been implicated in the pathogenesis of chronic inflammation in diabetes. We investigated whether increased levels of NIK could induce skeletal muscle insulin resistance. Six obese subjects with metabolic syndrome underwent skeletal muscle biopsies before and six months after gastric bypass surgery to quantitate NIK protein levels. L6 skeletal myotubes, transfected with NIK wild-type or NIK kinase-dead dominant negative plasmids, were treated with insulin alone or with adiponectin and insulin. Effects of NIK overexpression on insulin-stimulated glucose uptake were estimated using tritiated 2-deoxyglucose uptake. NF-κB activation (EMSA), phosphatidylinositol 3 (PI3) kinase activity, and phosphorylation of inhibitor κB kinase β and serine-threonine kinase (Akt) were measured. After weight loss, skeletal muscle NIK protein was significantly reduced in association with increased plasma adiponectin and enhanced AMP kinase phosphorylation and insulin sensitivity in obese subjects. Enhanced NIK expression in cultured L6 myotubes induced a dose-dependent decrease in insulin-stimulated glucose uptake. The decrease in insulin-stimulated glucose uptake was associated with a significant decrease in PI3 kinase activity and protein kinase B/Akt phosphorylation. Overexpression of NIK kinase-dead dominant negative did not affect insulin-stimulated glucose uptake. Adiponectin treatment inhibited NIK-induced NF-κB activation and restored insulin sensitivity by restoring PI3 kinase activation and subsequent Akt phosphorylation. These results indicate that NIK induces insulin resistance and further indicate that adiponectin exerts its insulin-sensitizing effect by suppressing NIK-induced skeletal muscle inflammation. These observations suggest that NIK could be an important therapeutic target for the treatment of insulin resistance associated with inflammation in obesity and type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document