scholarly journals APPL1 mediates adiponectin-stimulated p38 MAPK activation by scaffolding the TAK1-MKK3-p38 MAPK pathway

2011 ◽  
Vol 300 (1) ◽  
pp. E103-E110 ◽  
Author(s):  
Xiaoban Xin ◽  
Lijun Zhou ◽  
Caleb M. Reyes ◽  
Feng Liu ◽  
Lily Q. Dong

The adaptor protein APPL1 mediates the stimulatory effect of adiponectin on p38 mitogen-activated protein kinase (MAPK) signaling, yet the underlying mechanism remains unclear. Here we show that, in C2C12 cells, overexpression or suppression of APPL1 enhanced or suppressed, respectively, adiponectin-stimulated p38 MAPK upstream kinase cascade, consisting of transforming growth factor-β-activated kinase 1 (TAK1) and mitogen-activated protein kinase kinase 3 (MKK3). In vitro affinity binding and coimmunoprecipitation experiments revealed that TAK1 and MKK3 bind to different regions of APPL1, suggesting that APPL1 functions as a scaffolding protein to facilitate adiponectin-stimulated p38 MAPK activation. Interestingly, suppressing APPL1 had no effect on TNFα-stimulated p38 MAPK phosphorylation in C2C12 myotubes, indicating that the stimulatory effect of APPL1 on p38 MAPK activation is selective. Taken together, our study demonstrated that the TAK1-MKK3 cascade mediates adiponectin signaling and uncovers a scaffolding role of APPL1 in regulating the TAK1-MKK3-p38 MAPK pathway, specifically in response to adiponectin stimulation.

2006 ◽  
Vol 26 (6) ◽  
pp. 2408-2418 ◽  
Author(s):  
Matthew Brook ◽  
Carmen R. Tchen ◽  
Tomas Santalucia ◽  
Joanne McIlrath ◽  
J. Simon C. Arthur ◽  
...  

ABSTRACT The p38 mitogen-activated protein kinase (MAPK) signaling pathway, acting through the downstream kinase MK2, regulates the stability of many proinflammatory mRNAs that contain adenosine/uridine-rich elements (AREs). It is thought to do this by modulating the expression or activity of ARE-binding proteins that regulate mRNA turnover. MK2 phosphorylates the ARE-binding and mRNA-destabilizing protein tristetraprolin (TTP) at serines 52 and 178. Here we show that the p38 MAPK pathway regulates the subcellular localization and stability of TTP protein. A p38 MAPK inhibitor causes rapid dephosphorylation of TTP, relocalization from the cytoplasm to the nucleus, and degradation by the 20S/26S proteasome. Hence, continuous activity of the p38 MAPK pathway is required to maintain the phosphorylation status, cytoplasmic localization, and stability of TTP protein. The regulation of both subcellular localization and protein stability is dependent on MK2 and on the integrity of serines 52 and 178. Furthermore, the extracellular signal-regulated kinase (ERK) pathway synergizes with the p38 MAPK pathway to regulate both stability and localization of TTP. This effect is independent of kinases that are known to be synergistically activated by ERK and p38 MAPK. We present a model for the actions of TTP and the p38 MAPK pathway during distinct phases of the inflammatory response.


2005 ◽  
Vol 387 (1) ◽  
pp. 231-238 ◽  
Author(s):  
Víctor Javier SÁNCHEZ-ARÉVALO LOBO ◽  
Clara Isabel ACEVES LUQUERO ◽  
Luis ÁLVAREZ-VALLINA ◽  
Alex J. TIPPING ◽  
Juan Guinea VINIEGRA ◽  
...  

The chimaeric protein Bcr/Abl, the hallmark of chronic myeloid leukaemia, has been connected with several signalling pathways, such as those involving protein kinase B/Akt, JNK (c-Jun N-terminal kinase) or ERKs (extracellular-signal-regulated kinases) 1 and 2. However, no data about the p38 MAPK (mitogen-activated protein kinase) have been reported. Here, we present evidence showing that Bcr/Abl is able to modulate this signalling pathway. Transient transfection experiments indicated that overexpression of Bcr/Abl in 293T cells is able to activate p38 MAPK or induce p73 stabilization, suggesting that c-Abl and Bcr/Abl share some biological substrates. Interestingly, the control exerted by Bcr/Abl on the p38 MAPK pathway was not only mediated by the tyrosine kinase activity of Bcr/Abl, as the use of STI571 demonstrated. In fact, Bcr alone was able to induce p38 MAPK activation specifically through MKK3 (MAP kinase kinase 3). Supporting these observations, chronic myeloid leukaemia-derived K562 cells or BaF 3 cells stably transfected with Bcr/Abl showed higher levels of phosphorylated p38 MAPK compared with Bcr/Abl-negative cells. While Bcr/Abl-negative cells activated p38 MAPK in response to Ara-C (1-β-D-arabinofuranosylcytosine), Bcr/Abl-positive cells were unable to activate p38 MAPK, suggesting that the p38 MAPK pathway is not sensitive to Abl-dependent stimuli in Bcr/Abl-positive cells. Our results demonstrate that the involvement of Bcr/Abl in the p38 MAPK pathway is a key mechanism for explaining resistance to Ara-C, and could provide a clue for new therapeutic approaches based on the use of specific Abl inhibitors.


2002 ◽  
Vol 283 (5) ◽  
pp. L1094-L1102 ◽  
Author(s):  
Wen Ning ◽  
Ruiping Song ◽  
Chaojun Li ◽  
Edward Park ◽  
Amir Mohsenin ◽  
...  

In lung injury and progressive lung diseases, the multifunctional cytokine transforming growth factor-β1 (TGF-β1) modulates inflammatory responses and wound repair. Heme oxygenase-1 (HO-1) is a stress-inducible protein that has been demonstrated to confer cytoprotection against oxidative injury and provide a vital function in maintaining tissue homeostasis. Here we report that TGF-β1 is a potent inducer of HO-1 and examined the signaling pathway by which TGF-β1 regulates HO-1 expression in human lung epithelial cells (A549). TGF-β1(1–5 ng/ml) treatment resulted in a marked time-dependent induction of HO-1 mRNA in A549 cells, followed by corresponding increases in HO-1 protein and HO enzymatic activity. Actinomycin D and cycloheximide inhibited TGF-β1-responsive HO-1 mRNA expression, indicating a requirement for transcription and de novo protein synthesis. Furthermore, TGF-β1 rapidly activated the p38 mitogen-activated protein kinase (p38 MAPK) pathway in A549 cells. A chemical inhibitor of p38 MAPK (SB-203580) abolished TGF-β1-inducible HO-1 mRNA expression. Both SB-203580 and expression of a dominant-negative mutant of p38 MAPK inhibited TGF-β1-induced ho-1 gene activation, as assayed by luciferase activity of an ho-1enhancer/luciferase fusion construct (pMHO1luc-33+SX2). These studies demonstrate the critical intermediacy of the p38 MAPK pathway in the regulation of HO-1 expression by TGF-β1.


Blood ◽  
2001 ◽  
Vol 98 (3) ◽  
pp. 667-673 ◽  
Author(s):  
Valérie Marin ◽  
Catherine Farnarier ◽  
Sandra Grès ◽  
Solange Kaplanski ◽  
Michael S.-S. Su ◽  
...  

Abstract Thrombin, the terminal serine protease in the coagulation cascade, is a proinflammatory molecule in vivo and induces endothelial activation in vitro. The cellular signaling mechanisms involved in this function are unknown. The role of the p38 mitogen-activated protein kinase (MAPK) signaling pathway in thrombin-induced chemokine production was studied. Phosphorylation of both p38 MAPK and its substrate, ATF-2, was observed in human umbilical vein endothelial cells (HUVECs) stimulated with thrombin, with a maximum after 5 minutes of stimulation. Using the selective p38 MAPK inhibitor SB203580, there was a significant decrease in thrombin-induced interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1) protein production and messenger RNA steady-state levels. In addition, SB203580 decreased IL-8 and MCP-1 production induced by the thrombin receptor-1 agonist peptide (TRAP), suggesting functional links between the thrombin G protein–coupled receptor and the p38 MAPK pathway. Furthermore, endothelial activation in the presence of SB203580 decreased the chemotactic activity of thrombin-stimulated HUVEC supernatant on neutrophils and monocytic cells. In contrast, the p42/p44 MAPK pathway did not appear to be involved in thrombin- or TRAP-induced endothelial chemokine production, because there was no reduction in the presence of the p42/p44-specific inhibitor PD98059. These results demonstrate that the p38 rather than p42/44 MAPK signaling pathway plays an important role in thrombin-induced endothelial proinflammatory activation and suggest that inhibition of p38 MAPK may be an interesting target for anti-inflammatory strategies in vascular diseases combining thrombosis and inflammation.


2012 ◽  
Vol 90 (5) ◽  
pp. 655-662 ◽  
Author(s):  
Xiao Cui Lv ◽  
Hai Yan Zhou

Recently, many studies have attempted to illustrate the mechanism of autophagy in protection against oxidative stress to the heart induced by H2O2. However, whether resveratrol-induced autophagy involves the p38 mitogen-activated protein kinase (MAPK) pathway is still unknown. This study aimed to investigate whether treating H9c2 cells with resveratrol increases autophagy and attenuates the cell death and apoptosis induced by oxidative stress via the p38 MAPK pathway. Resveratrol with or without SB202190, an inhibitor of the p38 MAPK pathway, was added 30 min before H2O2. After H2O2 treatment, the cells were incubated under 5% CO2 at 37 °C for 24 h to assess cell survival and death or incubated for 20 min for Western blot and transmission electron microscopy. Flow cytometry was used to detect apoptosis after 6 h of H2O2 treatment. Resveratrol at 20 µmol/L protected H9c2 cells treated with 100 µmol/L H2O2 from oxidative damage. It increased cell survival and markedly decrease lactate dehydrogenase release. In addition, resveratrol increased autophagy and decreased H2O2-induced apoptosis. Furthermore, the protective effects of resveratrol were inhibited by 10 µmol/L SB202190. Thus, resveratrol protected H2O2-treated H9c2 cells by upregulating autophagy via the p38 MAPK pathway.


2005 ◽  
Vol 386 (9) ◽  
pp. 909-918 ◽  
Author(s):  
Iveta Dobreva ◽  
Olaf Zschörnig ◽  
Gérard Waeber ◽  
Richard W. James ◽  
Christian Widmann

Abstract Elevated low-density lipoprotein (LDL) levels induce activation of the p38 mitogen-activated protein kinase (MAPK), a stress-activated protein kinase potentially participating in the development of atherosclerosis. The nature of the lipoprotein components inducing p38 MAPK activation has remained unclear however. We show here that both LDLs and high-density lipoproteins (HDLs) have the ability to stimulate the p38 MAPKs with potencies that correlate with their cholesterol content. Cholesterol solubilized in methyl-β-cyclodextrin was sufficient to activate the p38 MAPK pathway. Liposomes made of phosphatidylcholine (PC) or sphingomyelin, the two main phospholipids found in lipoproteins, were unable to stimulate the p38 MAPKs. In contrast, PC liposomes loaded with cholesterol potently activated this pathway. Reducing the cholesterol content of LDL particles lowered their ability to activate the p38 MAPKs. Cell lines representative of the three main cell types found in blood vessels (endothelial cells, smooth muscle cells and fibroblasts) all activated their p38 MAPK pathway in response to LDLs or cholesterol-loaded PC liposomes. These results indicate that elevated cholesterol content in lipoproteins, as seen in hypercholesterolemia, favors the activation of the stress-activated p38 MAPK pathway in cells from the vessel wall, an event that might contribute to the development of atherosclerosis.


2011 ◽  
Vol 300 (2) ◽  
pp. C375-C382 ◽  
Author(s):  
Chunhui Wang ◽  
Hua Xu ◽  
Huacong Chen ◽  
Jing Li ◽  
Bo Zhang ◽  
...  

Diarrhea is a common manifestation of gastrointestinal disorders. Diarrhea-induced losses of fluid and electrolyte could lead to dehydration and electrolyte imbalances, resulting in significant morbidity and mortality, especially in children living in developing countries. Somatostatin, a peptide hormone secreted by D-cells, plays an important role in regulating motility and intestinal Na+ absorption. Although octreotide, a somatostatin analog, is used to treat diarrhea, its mechanisms of action are unclear. Here we showed that octreotide increased brush-border membrane Na+/H+ exchanger 8 (NHE8) expression in the small intestine to the exclusion of other NHEs that participate in Na+ absorption. The same effect also occurred in human intestinal cells (Caco-2). We found that the increase of NHE8 expression by somatostatin required p38 mitogen-activated protein kinase (MAPK) activation. Furthermore, the somatostatin receptor SSTR2 antagonist CYN154806 could abolish somatostatin-induced NHE8 expression and p38 MAPK phosphorylation. Thus our data provided the first concrete evidence indicating that somatostatin stimulates intestinal Na+ absorption by increasing intestinal NHE8 expression through the SSTR2-p38 MAPK pathway.


2002 ◽  
Vol 22 (20) ◽  
pp. 6931-6945 ◽  
Author(s):  
Ole Morten Seternes ◽  
Bjarne Johansen ◽  
Beate Hegge ◽  
Mona Johannessen ◽  
Stephen M. Keyse ◽  
...  

ABSTRACT The p38 mitogen-activated protein kinase (MAPK) pathway is an important mediator of cellular responses to environmental stress. Targets of p38 include transcription factors, components of the translational machinery, and downstream serine/threonine kinases, including MAPK-activated protein kinase 5 (MK5). Here we have used enhanced green fluorescent protein fusion proteins to analyze the subcellular localization of MK5. Although this protein is predominantly nuclear in unstimulated cells, MK5 shuttles between the nucleus and the cytoplasm. Furthermore, we have shown that the C-terminal domain of MK5 contains both a functional nuclear localization signal (NLS) and a leucine-rich nuclear export signal (NES), indicating that the subcellular distribution of this kinase reflects the relative activities of these two signals. In support of this, we have shown that stress-induced activation of the p38 MAPK stimulates the chromosomal region maintenance 1 protein-dependent nuclear export of MK5. This is regulated by both binding of p38 MAPK to MK5, which masks the functional NLS, and stress-induced phosphorylation of MK5 by p38 MAPK, which either activates or unmasks the NES. These properties may define the ability of MK5 to differentially phosphorylate both nuclear and cytoplasmic targets or alternatively reflect a mechanism whereby signals initiated by activation of MK5 in the nucleus may be transmitted to the cytoplasm.


2019 ◽  
Vol 12 ◽  
pp. 117863611986459 ◽  
Author(s):  
Jessica Gräb ◽  
Jan Rybniker

The p38 mitogen-activated protein kinase (MAPK) is involved in a multitude of essential cellular processes. The kinase is activated in response to environmental stresses, including bacterial infections and inflammation, to regulate the immune response of the host. However, recent studies have demonstrated that pathogens can manipulate p38 MAPK signaling for their own benefit to either prevent or induce host cell apoptosis. In addition, there is evidence demonstrating that p38 MAPK is a potent trigger of pathogen-induced necrosis driven by mitochondrial membrane disruption. Given the large number of p38 MAPK inhibitors that have been tested in clinical trials, these findings provide an opportunity to repurpose these drugs for improved control of infectious diseases.


Endocrinology ◽  
2001 ◽  
Vol 142 (6) ◽  
pp. 2336-2342 ◽  
Author(s):  
Christian B. Wade ◽  
Siobhan Robinson ◽  
Robert A. Shapiro ◽  
Daniel M. Dorsa

Abstract The rapid, nongenomic effects of estrogen are increasingly recognized as playing an important role in several aspects of estrogen action. Rapid activation of the mitogen-activated protein kinase (MAPK) signaling pathway by estrogen is among the more recently identified of these effects. To explore the role of estrogen receptors (ERs) in mediating these effects, we have transfected ER-negative Rat-2 fibroblasts with complementary DNA clones encoding either human ERα or rat ERβ and examined their ability to couple to activation of MAPK in response to 17β-estradiol (17β-E2) and other ligands. For both receptors, addition of E2 resulted in a rapid phosphorylation of MAPK. Activation of MAPK in ERα-transfected cells was partially and completely blocked by the antiestrogens tamoxifen and ICI 182,780, respectively. In ERβ-transfected cells, MAPK activation was less sensitive to inhibition by tamoxifen and ICI 182,780. We have also observed that, in this model system, a membrane-impermeable estrogen (BSA-E2) and 17α-E2 were both able to activate MAPK in a manner similar to E2 alone. Here also, ICI 182,780 blocked the ability of BSA-E2 to activate MAPK through ERα, but failed to block ERβ-mediated effects. BSA-E2 treatment, however, failed to activate nuclear estrogen-response-element-mediated gene transcription. These data show that these nuclear ERs are necessary for estrogen’s effects at the membrane. This model system will be useful in identifying molecular interactions involved in the rapid effects mediated by the ERs.


Sign in / Sign up

Export Citation Format

Share Document