Lumenal adenosine and AMP rapidly increase glucose transport by intact small intestine

2005 ◽  
Vol 289 (6) ◽  
pp. G1007-G1014 ◽  
Author(s):  
Yasuhiro Kimura ◽  
Jerrold R. Turner ◽  
Dwaine A. Braasch ◽  
Randal K. Buddington

Adenosine modulates the intestinal functions of secretion, motility, and immunity, yet little is known about the regulation of nutrient absorption. Therefore, we measured the carrier-mediated uptake of tracer d-[14C]glucose (2 μM) by everted sleeves of the mouse intestine after a lumenal exposure to adenosine and a disodium salt of AMP. Rates of glucose uptake by intact tissues increased almost twofold after a 7-min exposure to 5 mM adenosine (a physiological dose). The response was slightly more pronounced for AMP and could be induced by forskolin. The response to adenosine was blocked by theophylline and the A2 receptor antagonist 3,7-dimethyl-1-proparglyxanthine but not by the A1 receptor antagonist 8-phenyltheophylline. Glucose uptake by control and AMP-stimulated tissues was inhibited by phloridzin, implying that sodium-dependent glucose transporter 1 (SGLT1) is the responsive transporter, but the involvement of glucose transporter 2 (GLUT2) cannot be excluded. Of clinical relevance, AMP accelerated the systemic availability of 3- O-methylglucose after an oral administration to mice. Our results indicate that adenosine causes a rapid increase in carrier-mediated glucose uptake that is of clinical relevance and acts via receptors linked to a signaling pathway that involves intracellular cAMP production.

2017 ◽  
Vol 12 (11) ◽  
pp. 1934578X1701201 ◽  
Author(s):  
Denys Torres-Villarreal ◽  
Alberto Camacho ◽  
Fermín I. Milagro ◽  
Rocío Ortiz-Lopez ◽  
Ana Laura de la Garza

Flavonoid-rich foods intake has been associated with lower risk of non-communicable chronic diseases. Quercetin is the most abundant flavonoid in nature (fruits, vegetables, leaves and grains) as well as the most consumed flavonol. This study aims to investigate the potential effects of its conjugated form quercetin-3- O-glucoside (or isoquercetin) on glucose metabolism in rats and Caco-2 cells. To analyse the effect of quercetin-3- O-glucoside on postprandial hyperglycemia, an oral glucose tolerance test (OGTT) was conducted in Wistar rats. Additionally, Caco-2 cells were used to determine the effect of quercetin-3- O-glucoside (30 to 60 μM) on mRNA expression of genes involved in glucose uptake by RT-PCR. Thereby, in vivo studies demonstrated that quercetin-3- O-glucoside decreased blood glucose levels evaluated by OGTT in rats. Furthermore, in the presence of Na+, quercetin-3- O-glucoside inhibited methylglucoside (MG) uptake in enterocytes and both sodium dependent glucose transporter-1 (SGLT1)- and glucose transporter-2 (GLUT2)-mediated glucose uptake were downregulated in Caco-2 cells incubated with quercetin-3- O-glucoside. In summary, our results show that quercetin-3- O-glucoside improves postprandial glycemic control in rats and reduces sugar uptake in Caco-2 cells, possible by decreasing the expression of glucose transporters (SGLT1 and GLUT2) according to the results obtained through RT-PCR.


2012 ◽  
Vol 24 (2) ◽  
pp. 344 ◽  
Author(s):  
M. Garcia-Herreros ◽  
I. M. Aparicio ◽  
D. Rath ◽  
T. Fair ◽  
P. Lonergan

Previous studies have shown that developmental kinetic rates following IVF are lower in female than in male blastocysts and that this may be related to differences in glucose metabolism. In addition, an inhibition of phosphatidylinositol 3-kinase (PI3-K) inhibits glucose uptake in murine blastocysts. Therefore, the aim of this study was to identify and compare the expression of proteins involved in glucose metabolism (hexokinase-I, HK-I; phosphofructokinase-1, PFK-1; pyruvate kinase1/2, PK1/2; glyceraldehyde-3-phosphate dehydrogenase, GAPDH; glucose transporter-1, GLUT-1; and glycogen synthase kinase-3, GSK-3) in male and female bovine blastocysts to determine whether PI3-K has a role in the regulation of the expression of these proteins. Hexokinase-I, PFK-1, PK1/2, GAPDH and GLUT-1 were present in bovine embryos. Protein expression of these proteins and GSK-3 was significantly higher in male compared with female blastocysts. Inhibition of PI3-K with LY294002 significantly decreased the expression of HK-I, PFK-1, GAPDH, GSK-3 A/B and GLUT-1. Results showed that the expression of glycolytic proteins HK-I, PFK-1, GAPDH and PK1/2, and the transporters GLUT-1 and GSK-3 is regulated by PI3-K in bovine blastocysts. Moreover, the differential protein expression observed between male and female blastocysts might explain the faster developmental kinetics seen in males, as the expression of main proteins involved in glycolysis and glycogenogenesis was significantly higher in male than female bovine embryos and also could explain the sensitivity of male embryos to a high concentration of glucose, as a positive correlation between GLUT-1 expression and glucose uptake in embryos has been demonstrated.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hong-Jie Chen ◽  
Chih-Yuan Ko ◽  
Jian-Hua Xu ◽  
Yu-Chu Huang ◽  
James Swi-Bea Wu ◽  
...  

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease, and most patients with T2DM develop nonalcoholic fatty liver disease (NAFLD). Both diseases are closely linked to insulin resistance (IR). Our previous studies demonstrated that Ruellia tuberosa L. (RTL) extract significantly enhanced glucose uptake in the skeletal muscles and ameliorated hyperglycemia and IR in T2DM rats. We proposed that RTL might be via enhancing hepatic antioxidant capacity. However, the potent RTL bioactivity remains unidentified. In this study, we investigated the effects of RTL on glucose uptake, IR, and lipid accumulation in vitro to mimic the T2DM accompanied by the NAFLD paradigm. FL83B mouse hepatocytes were treated with tumor necrosis factor-α (TNF-α) to induce IR, coincubated with oleic acid (OA) to induce lipid accumulation, and then, treated with RTL fractions, fractionated with n-hexane or ethyl acetate (EA), from column chromatography, and analyzed by thin-layer chromatography. Our results showed that the ethyl acetate fraction (EAf2) from RTL significantly increased glucose uptake and suppressed lipid accumulation in TNF-α plus OA-treated FL83B cells. Western blot analysis showed that EAf2 from RTL ameliorated IR by upregulating the expression of insulin-signaling-related proteins, including protein kinase B, glucose transporter-2, and peroxisome proliferator-activated receptor alpha in TNF-α plus OA-treated FL83B cells. The results of this study suggest that EAf2 from RTL may improve hepatic glucose uptake and alleviate lipid accumulation by ameliorating and suppressing the hepatic insulin signaling and lipogenesis pathways, respectively, in hepatocytes.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Giovanni Davogustto ◽  
Rebecca Salazar ◽  
Hernan Vasquez ◽  
Heinrich Taegtmeyer

The heart remodels metabolically and structurally before it fails. Metabolically, the heart increases its reliance on carbohydrates for energy provision. Structurally, the heart hypertrophies to sustain increased hemodynamic stress. There is evidence suggesting that the activation of the mechanistic Target Of Rapamycin Complex 1 (mTORC1) pathway is closely tied to glucose uptake by the heart to drive the metabolic and structural remodeling. We have previously shown that with insulin stimulation or increases in workload, the glycolytic intermediate glucose 6-phosphate (G6P) is required to activate mTORC1. Sustained mTORC1 activation leads, in turn, to ER stress and contractile dysfunction. Studies by others in the kidney have shown that mTORC1 activation upregulates glucose transporter 1 (Glut1) expression and glucose uptake. We therefore test the hypothesis that chronic mTORC1 overactivation results in G6P accumulation, and precedes structural and functional remodeling in the heart. We developed mice with inducible, cardiac-specific deficiency of the protein tuberin (TSC2), a member of the tuberous sclerosis complex, the principal inhibitor of mTORC1. Intracellular G6P concentrations were measured enzymatically. Immunoblotting was performed on protein markers to confirm activation of mTORC1 downstream targets and of the unfolded protein response. Histologic analysis were performed to assess structural changes. Serial echocardiograms were performed to evaluate cardiac function. The results indicate that chronic mTORC1 activation through inducible, cardiac-specific deletion of TSC2 is accompanied by G6P accumulation and metabolic remodeling. Metabolic remodeling precedes structural and functional remodeling. We suggest that in the heart, sustained mTORC1 activation is a key driver of metabolic and structural remodeling.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
S. E. Hurst ◽  
S. C. Minkin ◽  
J. Biggerstaff ◽  
M. S. Dhar

Atp10cis a strong candidate gene for diet-induced obesity and type 2 diabetes. To identify molecular and cellular targets of ATP10C,Atp10cexpression was alteredin vitroin C2C12 skeletal muscle myotubes by transient transfection with anAtp10c-specific siRNA. Glucose uptake assays revealed that insulin stimulation caused a significant 2.54-fold decrease in 2-deoxyglucose uptake in transfected cells coupled with a significant upregulation of native mitogen-activated protein kinases (MAPKs), p38, and p44/42. Additionally, glucose transporter-1 (GLUT1) was significantly upregulated; no changes in glucose transporter-4 (GLUT4) expression were observed. The involvement of MAPKs was confirmed using the specific inhibitor SB203580, which downregulated the expression of native and phosphorylated MAPK proteins in transfected cells without any changes in insulin-stimulated glucose uptake. Results indicate thatAtp10cregulates glucose metabolism, at least in part via the MAPK pathway, and, thus, plays a significant role in the development of insulin resistance and type 2 diabetes.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Hye Kyung Kim

Aims of study. Present study investigated the effect ofEcklonia cava(EC) on intestinal glucose uptake and insulin secretion.Materials and methods. Intestinal Na+-dependent glucose uptake (SGU) and Na+-dependent glucose transporter 1 (SGLT1) protein expression was determined using brush border membrane vesicles (BBMVs). Glucose-induced insulin secretion was examined in pancreatic β-islet cells. The antihyperglycemic effects of EC, SGU, and SGLT1 expression were determined in streptozotocin (STZ)-induced diabetic mice.Results. Methanol extract of EC markedly inhibited intestinal SGU of BBMV with the IC50value of 345 μg/mL. SGLT1 protein expression was dose dependently down regulated with EC treatment. Furthermore, insulinotrophic effect of EC extract was observed at high glucose media in isolated pancreatic β-islet cellsin vitro. We next conducted the antihyperglycemic effect of EC in STZ-diabetic mice. EC supplementation markedly suppressed SGU and SGLT1 abundance in BBMV from STZ mice. Furthermore, plasma insulin level was increased by EC treatment in diabetic mice. As a result, EC supplementation improved postprandial glucose regulation, assessed by oral glucose tolerance test, in diabetic mice.Conclusion. These results suggest that EC play a role in controlling dietary glucose absorption at the intestine and insulinotrophic action at the pancreas contributing blood glucose homeostasis in diabetic condition.


Endocrinology ◽  
2012 ◽  
Vol 153 (4) ◽  
pp. 1783-1794 ◽  
Author(s):  
Sybille D. Reichardt ◽  
Michael Föller ◽  
Rexhep Rexhepaj ◽  
Ganesh Pathare ◽  
Kerstin Minnich ◽  
...  

Glucocorticoid (GC) treatment of inflammatory disorders, such as inflammatory bowel disease, causes deranged metabolism, in part by enhanced intestinal resorption of glucose. However, the underlying molecular mechanism is poorly understood. Hence, we investigated transcriptional control of genes reported to be involved in glucose uptake in the small intestine after GC treatment and determined effects of GC on electrogenic glucose transport from transepithelial currents. GRvillinCre mice lacking the GC receptor (GR) in enterocytes served to identify the target cell of GC treatment and the requirement of the GR itself; GRdim mice impaired in dimerization and DNA binding of the GR were used to determine the underlying molecular mechanism. Our findings revealed that oral administration of dexamethasone to wild-type mice for 3 d increased mRNA expression of serum- and GC-inducible kinase 1, sodium-coupled glucose transporter 1, and Na+/H+ exchanger 3, as well as electrogenic glucose transport in the small intestine. In contrast, GRvillinCre mice did not respond to GC treatment, neither with regard to gene activation nor to glucose transport. GRdim mice were also refractory to GC, because dexamethasone treatment failed to increase both, gene expression and electrogenic glucose transport. In addition, the rise in blood glucose levels normally observed after GC administration was attenuated in both mutant mouse strains. We conclude that enhanced glucose transport in vivo primarily depends on gene regulation by the dimerized GR in enterocytes, and that this mechanism contributes to GC-induced hyperglycemia.


2017 ◽  
Vol 313 (4) ◽  
pp. C421-C429 ◽  
Author(s):  
Abraham J. Al-Ahmad

Glucose constitutes a major source of energy of mammalian brains. Glucose uptake at the blood-brain barrier (BBB) occurs through a facilitated glucose transport, through glucose transporter 1 (GLUT1), although other isoforms have been described at the BBB. Mutations in GLUT1 are associated with the GLUT1 deficiency syndrome, yet none of the current in vitro models of the human BBB maybe suited for modeling such a disorder. In this study, we investigated the expression of glucose transporters and glucose diffusion across brain microvascular endothelial cells (BMECs) derived from healthy patient-derived induced pluripotent stem cells (iPSCs). We investigated the expression of different glucose transporters at the BBB using immunocytochemistry and flow cytometry and measured glucose uptake and diffusion across BMEC monolayers obtained from two iPSC lines and from hCMEC/D3 cells. BMEC monolayers showed expression of several glucose transporters, in particular GLUT1, GLUT3, and GLUT4. Diffusion of glucose across the monolayers was mediated via a saturable transcellular mechanism and partially inhibited by pharmacological inhibitors. Taken together, our study suggests the presence of several glucose transporters isoforms at the human BBB and demonstrates the feasibility of modeling glucose across the BBB using patient-derived stem cells.


Sign in / Sign up

Export Citation Format

Share Document