Role of iron in NF-kappa B activation and cytokine gene expression by rat hepatic macrophages

1997 ◽  
Vol 272 (6) ◽  
pp. G1355-G1364 ◽  
Author(s):  
M. Lin ◽  
R. A. Rippe ◽  
O. Niemela ◽  
G. Brittenham ◽  
H. Tsukamoto

A redox-sensitive nuclear factor, NF-kappa B, induces transcription of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) in macrophages. The present study has investigated the role of iron in NF-kappa B activation and TNF-alpha and IL-6 expression by rat hepatic macrophages (HM). As an in vivo model, cholestatic liver injury was induced in rats by ligation of the common bile duct (BDL). During the first 2 wk after BDL, there was an increase in the hepatic level of thiobarbituric acid-reactive substances (TBARS) that was accompanied by the appearance of protein-malondialdehyde adducts in the periportal region. This increase was reduced after 3 wk. TNF-alpha and IL-6 mRNA levels in HM from the BDL rats were increased at 1 and 2 wk and attenuated at 3 wk. Gel mobility shift assay of HM nuclear extracts demonstrated the similar temporal pattern of enhanced NF-kappa B binding activity. Treatment of the BDL animals with 1,2-dimethyl-3-hydroxypyrid-4-one (L-1), a lipophilic iron chelator, suppressed the increases in hepatic TBARS by 64%, plasma alanine aminotransferase by 45%, and HM TNF-alpha and IL-6 mRNA by > 84%. Concomitantly, the HM NF-kappa B binding activity was reduced close to the level observed in sham-operated rats. Treatment of cultured HM with L-1 also blocked lipopolysaccharide-stimulated NF-kappa B activation and TNF-alpha and IL-6 expression at mRNA and protein levels. These results demonstrate that the iron chelator effectively blocks NF-kappa B activation and coordinate TNF-alpha and IL-6 gene upregulation by HM in cholestatic liver injury or under in vitro lipopolysaccharide stimulation. These findings support a pivotal role for iron in activation of NF-kappa B and cytokine gene expression by HM in vitro and in vivo.

2006 ◽  
Vol 17 (2) ◽  
pp. 907-916 ◽  
Author(s):  
Anne Straube ◽  
Gerd Hause ◽  
Gero Fink ◽  
Gero Steinberg

Conventional kinesin is a ubiquitous organelle transporter that moves cargo toward the plus-ends of microtubules. In addition, several in vitro studies indicated a role of conventional kinesin in cross-bridging and sliding microtubules, but in vivo evidence for such a role is missing. In this study, we show that conventional kinesin mediates microtubule-microtubule interactions in the model fungus Ustilago maydis. Live cell imaging and ultrastructural analysis of various mutants in Kin1 revealed that this kinesin-1 motor is required for efficient microtubule bundling and participates in microtubule bending in vivo. High levels of Kin1 led to increased microtubule bending, whereas a rigor-mutation in the motor head suppressed all microtubule motility and promoted strong microtubule bundling, indicating that kinesin can form cross-bridges between microtubules in living cells. This effect required a conserved region in the C terminus of Kin1, which was shown to bind microtubules in vitro. In addition, a fusion protein of yellow fluorescent protein and the Kin1tail localized to microtubule bundles, further supporting the idea that a conserved microtubule binding activity in the tail of conventional kinesins mediates microtubule-microtubule interactions in vivo.


2000 ◽  
Vol 7 (3) ◽  
pp. 457-462 ◽  
Author(s):  
Sören Schubert ◽  
Ingo B. Autenrieth

ABSTRACT The iron chelator desferrioxamine (DFO) B is widely used in the therapy of patients with iron overload. As a side effect, DFO may favor the occurrence of fulminant Yersinia infections. Previous work from our laboratory showed that this might be due to a dual role of DFO: growth promotion of the pathogen and immunosuppression of the host. In this study, we sought to determine whether conjugation of DFO to hydroxyethyl starch (HES-DFO) may prevent exacerbation ofYersinia infection in mice. We found HES-DFO to promote neither growth of Yersinia enterocolitica nor mitogen-induced T-cell proliferation and gamma interferon production by T cells in vitro. Nevertheless, in vivo HES-DFO promoted growth ofY. enterocolitica possibly due to cleavage of HES and release of DFO. The pretreatment of mice with DFO resulted in death of all mice 2 to 5 days after application of a normally sublethal inoculum of Y. enterocolitica, while none of the mice pretreated with HES-DFO died within the first 7 days postinfection. However, some of the HES-DFO-treated mice died 8 to 14 days postinfection. Thus, due to the delayed in vivo effect HES-DFO failed to triggerYersinia-induced septic shock, which accounts for early mortality in DFO-associated septicemia. Moreover, our data suggest that DFO needs to be taken up by host cells in order to exert its immunosuppressive action. These results strongly suggest that HES-DFO might be a favorable drug with fewer side effects than DFO in terms of DFO-promoted fulminant infections.


1995 ◽  
Vol 312 (3) ◽  
pp. 833-838 ◽  
Author(s):  
A F G Slater ◽  
M Kimland ◽  
S A Jiang ◽  
S Orrenius

Rat thymocytes spontaneously undergo apoptotic death in cell culture, and are also sensitive to the induction of apoptosis by various stimuli. We show that unstimulated thymocytes constitutively express a p50-containing nuclear factor kappa B (NF kappa B)/rel DNA-binding activity in their nuclei. When the cells were fractionated by density-gradient centrifugation this activity was found to be most pronounced in immature CD4+8+ thymocytes, the cell population that undergoes selection by apoptosis in vivo and that is most sensitive to external inducers of apoptosis in vitro. The intensity of the NF kappa B/rel protein-DNA complex was significantly enhanced 30 min after exposing thymocytes to methylprednisolone or etoposide, two agents well known to induce apoptosis in these cells. Expression of this DNA-binding activity therefore correlates with the subsequent occurrence of apoptosis. By analogy to other systems, it has been suggested that antioxidants such as pyrrolidine dithiocarbamate (PDTC) inhibit thymocyte apoptosis by preventing the activation of an NF kappa B/rel transcription factor. However, we have found that etoposide induces a very similar enhancement of the NF kappa B/rel DNA-binding activity in the presence or absence of PDTC, despite a pronounced inhibition of apoptotic DNA fragmentation in the former situation. Dithiocarbamates therefore do not exert their anti-apoptotic activity in thymocytes by inhibiting the activation of this transcription factor.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Shashi Bala ◽  
Gyongyi Szabo

Alcoholic liver disease (ALD) is a major global health problem. Chronic alcohol use results in inflammation and fatty liver, and in some cases, it leads to fibrosis and cirrhosis or hepatocellular carcinoma. Increased proinflammatory cytokines, particularly TNF alpha, play a central role in the pathogenesis of ALD. TNF alpha is tightly regulated at transcriptional and posttranscriptional levels. Recently, microRNAs (miRNAs) have been shown to modulate gene functions. The role of miRNAs in ALD is getting attention, and recent studies suggest that alcohol modulates miRNAs. Recently, we showed that alcohol induces miR-155 expression both in vitro (RAW 264.7 macrophage) and in vivo (Kupffer cells, KCs of alcohol-fed mice). Induction of miR-155 contributed to increased TNF alpha production and to the sensitization of KCs to produce more TNF alpha in response to LPS. In this paper, we summarize the current knowledge of miRNAs in ALD and also report increased expression of miR-155 and miR-132 in the total liver as well as in isolated hepatocytes and KCs of alcohol-fed mice. Our novel finding of the alcohol-induced increase of miRNAs in hepatocytes and KCs after alcohol feeding provides further insight into the evolving knowledge regarding the role of miRNAs in ALD.


1992 ◽  
Vol 287 (2) ◽  
pp. 645-649 ◽  
Author(s):  
A R Freedman ◽  
R J Sharma ◽  
G J Nabel ◽  
S G Emerson ◽  
G E Griffin

The cellular localization of nuclear factor kappa B (NF-kappa B) binding activity in rat liver has been investigated using electrophoretic mobility shift assay on extracts of highly purified hepatocytes and Kupffer cells obtained from liver perfused in vivo with collagenase. Constitutive NF-kappa B binding activity was demonstrated in nuclear extracts of control Kupffer cells, and this was not apparently influenced by injection of lipopolysaccharide (LPS) into rats 24 h before perfusion. In contrast, little nuclear NF-kappa B binding activity was present in hepatocytes from control animals, although there was detectable inactive, inhibitor-bound, NF-kappa B in the cytoplasm. However, nuclear NF-kappa B binding activity was increased in hepatocytes from LPS-treated animals and after in vitro culture of control rat hepatocytes. Thus NF-kappa B binding activity has been demonstrated in highly purified hepatocytes and appears to be inducible both in vivo and in vitro. These findings support a role for NF-kappa B in hepatocyte gene regulation which may be important in the modulation of the hepatic acute phase response.


1996 ◽  
Vol 270 (6) ◽  
pp. L1052-L1059 ◽  
Author(s):  
P. J. Jagielo ◽  
P. S. Thorne ◽  
J. A. Kern ◽  
T. J. Quinn ◽  
D. A. Schwartz

To investigate the role of endotoxin in grain dust-induced airway inflammation, we reduced the endotoxin activity from extracts of corn dust (CDE), using three distinct methods, and determined the effect of endotoxin activity on the in vitro and in vivo inflammatory response to CDE. Escherichia coli lipopolysaccharide solution (LPS) and CDE solution were separated into > 100-kDa and < 100-kDa fractions by ultracentrifugation. Endotoxin activity was predominantly present in the > 100-kDa fractions of the LPS and CDE solutions. Charged-membrane filtration of the > 100-kDa fractions of LPS and CDE resulted in the reduction of endotoxin activity by 99.9 and 80%, respectively. Treatment of the > 100-kDa fractions of LPS and CDE with polymyxin B-coated beads reduced the endotoxin activity by 96 and 89%, respectively. The untreated > 100-kDa fractions of LPS and CDE caused significantly greater (P < 0.01) release of tumor necrosis factor-alpha (TNF-alpha) from THP-1 cells in vitro compared with its respective < 100-kDa fraction or either of the treated (charged filter or polymyxin B) > 100-kDa fractions. Similarly, mice exposed to either of the untreated > 100-kDa fractions of LPS or CDE by inhalation developed significantly greater (P < 0.01) concentrations of lavage neutrophils and TNF-alpha in the lavage fluid compared with mice exposed to the respective < 100-kDa fraction or either of the treated > 100-kDa fractions. These results indicate that endotoxin is primarily responsible for the in vitro and in vivo inflammatory response to CDE.


2019 ◽  
Author(s):  
Adam S. B. Jalal ◽  
César L. Pastrana ◽  
Ngat T. Tran ◽  
Clare. E. Stevenson ◽  
David M. Lawson ◽  
...  

ABSTRACTThe tripartite ParA-ParB-parS complex ensures faithful chromosome segregation in the majority of bacterial species. ParB nucleates on a centromere-like parS site and spreads to neighboring DNA to form a network of protein-DNA complexes. This nucleoprotein network interacts with ParA to partition the parS locus, hence the chromosome to each daughter cell. Here, we determine the co-crystal structure of a C-terminal domain truncated ParB-parS complex from Caulobacter crescentus, and show that its N-terminal domain adopts alternate conformations. The multiple conformations of the N-terminal domain might facilitate the spreading of ParB on the chromosome. Next, using ChIP-seq we show that ParBs from different bacterial species exhibit variation in their intrinsic capability for spreading, and that the N-terminal domain is a determinant of this variability. Finally, we show that the C-terminal domain of Caulobacter ParB possesses no or weak non-specific DNA-binding activity. Engineered ParB variants with enhanced non-specific DNA-binding activity condense DNA in vitro but do not spread further than wild-type in vivo. Taken all together, our results emphasize the role of the N-terminal domain in ParB spreading and faithful chromosome segregation in Caulobacter crescentus.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
HM Lee ◽  
TG Ahn ◽  
CW Kim ◽  
HJ An
Keyword(s):  

1987 ◽  
Vol 26 (01) ◽  
pp. 1-6 ◽  
Author(s):  
S. Selvaraj ◽  
M. R. Suresh ◽  
G. McLean ◽  
D. Willans ◽  
C. Turner ◽  
...  

The role of glycoconjugates in tumor cell differentiation has been well documented. We have examined the expression of the two anomers of the Thomsen-Friedenreich antigen on the surface of human, canine and murine tumor cell membranes both in vitro and in vivo. This has been accomplished through the synthesis of the disaccharide terminal residues in both a and ß configuration. Both entities were used to generate murine monoclonal antibodies which recognized the carbohydrate determinants. The determination of fine specificities of these antibodies was effected by means of cellular uptake, immunohistopathology and immunoscintigraphy. Examination of pathological specimens of human and canine tumor tissue indicated that the expressed antigen was in the β configuration. More than 89% of all human carcinomas tested expressed the antigen in the above anomeric form. The combination of synthetic antigens and monoclonal antibodies raised specifically against them provide us with invaluable tools for the study of tumor marker expression in humans and their respective animal tumor models.


Sign in / Sign up

Export Citation Format

Share Document