scholarly journals Conjugation of Hydroxyethyl Starch to Desferrioxamine (DFO) Modulates the Dual Role of DFO in Yersinia enterocolitica Infection

2000 ◽  
Vol 7 (3) ◽  
pp. 457-462 ◽  
Author(s):  
Sören Schubert ◽  
Ingo B. Autenrieth

ABSTRACT The iron chelator desferrioxamine (DFO) B is widely used in the therapy of patients with iron overload. As a side effect, DFO may favor the occurrence of fulminant Yersinia infections. Previous work from our laboratory showed that this might be due to a dual role of DFO: growth promotion of the pathogen and immunosuppression of the host. In this study, we sought to determine whether conjugation of DFO to hydroxyethyl starch (HES-DFO) may prevent exacerbation ofYersinia infection in mice. We found HES-DFO to promote neither growth of Yersinia enterocolitica nor mitogen-induced T-cell proliferation and gamma interferon production by T cells in vitro. Nevertheless, in vivo HES-DFO promoted growth ofY. enterocolitica possibly due to cleavage of HES and release of DFO. The pretreatment of mice with DFO resulted in death of all mice 2 to 5 days after application of a normally sublethal inoculum of Y. enterocolitica, while none of the mice pretreated with HES-DFO died within the first 7 days postinfection. However, some of the HES-DFO-treated mice died 8 to 14 days postinfection. Thus, due to the delayed in vivo effect HES-DFO failed to triggerYersinia-induced septic shock, which accounts for early mortality in DFO-associated septicemia. Moreover, our data suggest that DFO needs to be taken up by host cells in order to exert its immunosuppressive action. These results strongly suggest that HES-DFO might be a favorable drug with fewer side effects than DFO in terms of DFO-promoted fulminant infections.

2011 ◽  
Vol 22 (8) ◽  
pp. 1290-1299 ◽  
Author(s):  
Simren Mehta ◽  
L. David Sibley

Apicomplexan parasites rely on actin-based gliding motility to move across the substratum, cross biological barriers, and invade their host cells. Gliding motility depends on polymerization of parasite actin filaments, yet ∼98% of actin is nonfilamentous in resting parasites. Previous studies suggest that the lack of actin filaments in the parasite is due to inherent instability, leaving uncertain the role of actin-binding proteins in controlling dynamics. We have previously shown that the single allele of Toxoplasma gondii actin depolymerizing factor (TgADF) has strong actin monomer–sequestering and weak filament-severing activities in vitro. Here we used a conditional knockout strategy to investigate the role of TgADF in vivo. Suppression of TgADF led to accumulation of actin-rich filaments that were detected by immunofluorescence and electron microscopy. Parasites deficient in TgADF showed reduced speed of motility, increased aberrant patterns of motion, and inhibition of sustained helical gliding. Lack of TgADF also led to severe defects in entry and egress from host cells, thus blocking infection in vitro. These studies establish that the absence of stable actin structures in the parasite are not simply the result of intrinsic instability, but that TgADF is required for the rapid turnover of parasite actin filaments, gliding motility, and cell invasion.


2020 ◽  
Vol 51 (1) ◽  
Author(s):  
Mario Caruffo ◽  
Dinka Mandakovic ◽  
Madelaine Mejías ◽  
Ignacio Chávez-Báez ◽  
Pablo Salgado ◽  
...  

Abstract Salmonid Rickettsial Septicaemia (SRS), caused by Piscirickettsia salmonis, is a severe bacterial disease in the Chilean salmon farming industry. Vaccines and antibiotics are the current strategies to fight SRS; however, the high frequency of new epizootic events confirms the need to develop new strategies to combat this disease. An innovative opportunity is perturbing the host pathways used by the microorganisms to replicate inside host cells through host-directed antimicrobial drugs (HDAD). Iron is a critical nutrient for P. salmonis infection; hence, the use of iron-chelators becomes an excellent alternative to be used as HDAD. The aim of this work was to use the iron chelator Deferiprone (DFP) as HDAD to treat SRS. Here, we describe the protective effect of the iron chelator DFP over P. salmonis infections at non-antibiotic concentrations, in bacterial challenges both in vitro and in vivo. At the cellular level, our results indicate that DFP reduced the intracellular iron content by 33.1% and P. salmonis relative load during bacterial infections by 78%. These findings were recapitulated in fish, where DFP reduced the mortality of rainbow trout challenged with P. salmonis in 34.9% compared to the non-treated group. This is the first report of the protective capacity of an iron chelator against infection in fish, becoming a potential effective host-directed therapy for SRS and other animals against ferrophilic pathogens.


2016 ◽  
Vol 84 (12) ◽  
pp. 3458-3470 ◽  
Author(s):  
Mike Khan ◽  
Jerome S. Harms ◽  
Fernanda M. Marim ◽  
Leah Armon ◽  
Cherisse L. Hall ◽  
...  

Brucella species are facultative intracellular bacteria that cause brucellosis, a chronic debilitating disease significantly impacting global health and prosperity. Much remains to be learned about how Brucella spp. succeed in sabotaging immune host cells and how Brucella spp. respond to environmental challenges. Multiple types of bacteria employ the prokaryotic second messenger cyclic di-GMP (c-di-GMP) to coordinate responses to shifting environments. To determine the role of c-di-GMP in Brucella physiology and in shaping host- Brucella interactions, we utilized c-di-GMP regulatory enzyme deletion mutants. Our results show that a Δ bpdA phosphodiesterase mutant producing excess c-di-GMP displays marked attenuation in vitro and in vivo during later infections. Although c-di-GMP is known to stimulate the innate sensor STING, surprisingly, the Δ bpdA mutant induced a weaker host immune response than did wild-type Brucella or the low-c-di-GMP guanylate cyclase Δ cgsB mutant. Proteomics analysis revealed that c-di-GMP regulates several processes critical for virulence, including cell wall and biofilm formation, nutrient acquisition, and the type IV secretion system. Finally, Δ bpdA mutants exhibited altered morphology and were hypersensitive to nutrient-limiting conditions. In summary, our results indicate a vital role for c-di-GMP in allowing Brucella to successfully navigate stressful and shifting environments to establish intracellular infection.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2141
Author(s):  
Ignacio Rodriguez-Izquierdo ◽  
Rafael Ceña-Diez ◽  
Maria Jesús Serramia ◽  
Rosa Rodriguez-Fernández ◽  
Isidoro Martínez ◽  
...  

The respiratory syncytial virus (RSV) causes respiratory infection and bronchiolitis, requiring hospitalization mainly in infants. The interaction between RSV, envelope glycoproteins G and F, and cell surface heparan sulfate proteoglycans (HSPG) is required for binding and entry into the host cells. A G2-S16 polyanionic carbosilane dendrimer was identified as a possible RSV inhibitor. We speculated that the G2-S16 dendrimer adheres to the host cell-surface HSPG, acts through binding to HS receptors, and prevents further RSV infection. The G2-S16 dendrimer was non-toxic when applied intranasally to Balb/c mice, and interestingly enough, this G2-S16 dendrimer inhibits 85% RSV. Therefore, our G2-S16 dendrimer could be a candidate for developing a new possible therapy against RSV infection.


2021 ◽  
Vol 118 (26) ◽  
pp. e2017130118
Author(s):  
Demba Sarr ◽  
Aaron D. Gingerich ◽  
Nuha Milad Asthiwi ◽  
Faris Almutairi ◽  
Giuseppe A. Sautto ◽  
...  

Dual oxidase 1 (DUOX1) is an NADPH oxidase that is highly expre-ssed in respiratory epithelial cells and produces H2O2 in the airway lumen. While a line of prior in vitro observations suggested that DUOX1 works in partnership with an airway peroxidase, lactoperoxidase (LPO), to produce antimicrobial hypothiocyanite (OSCN−) in the airways, the in vivo role of DUOX1 in mammalian organisms has remained unproven to date. Here, we show that Duox1 promotes antiviral innate immunity in vivo. Upon influenza airway challenge, Duox1−/− mice have enhanced mortality, morbidity, and impaired lung viral clearance. Duox1 increases the airway levels of several cytokines (IL-1β, IL-2, CCL1, CCL3, CCL11, CCL19, CCL20, CCL27, CXCL5, and CXCL11), contributes to innate immune cell recruitment, and affects epithelial apoptosis in the airways. In primary human tracheobronchial epithelial cells, OSCN− is generated by LPO using DUOX1-derived H2O2 and inactivates several influenza strains in vitro. We also show that OSCN− diminishes influenza replication and viral RNA synthesis in infected host cells that is inhibited by the H2O2 scavenger catalase. Binding of the influenza virus to host cells and viral entry are both reduced by OSCN− in an H2O2-dependent manner in vitro. OSCN− does not affect the neuraminidase activity or morphology of the influenza virus. Overall, this antiviral function of Duox1 identifies an in vivo role of this gene, defines the steps in the infection cycle targeted by OSCN−, and proposes that boosting this mechanism in vivo can have therapeutic potential in treating viral infections.


2021 ◽  
Vol 7 ◽  
Author(s):  
Shiv Bharadwaj ◽  
Mahendra Singh ◽  
Nikhil Kirtipal ◽  
Sang Gu Kang

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as coronavirus disease 2019 (COVID-19) pandemic, has killed more than a million people worldwide, and researchers are constantly working to develop therapeutics in the treatment and prevention of this new viral infection. To infect and induced pathogenesis as observed in other viral infections, we postulated that SARS-CoV-2 may also require an escalation in the anabolic metabolism, such as glucose and glutamine, to support its energy and biosynthetic requirements during the infection cycle. Recently, the requirement of altered glucose metabolism in SARS-CoV-2 pathogenesis was demonstrated, but the role of dysregulated glutamine metabolism is not yet mentioned for its infection. In this perspective, we have attempted to provide a summary of possible biochemical events on putative metabolic reprograming of glutamine in host cells upon SARS-CoV-2 infection by comparison to other viral infections/cancer metabolism and available clinical data or research on SARS-CoV-2 pathogenesis. This systematic hypothesis concluded the vital role of glutaminase-1 (GLS1), phosphoserine aminotransferase (PSAT1), hypoxia-inducible factor-1 alpha (HIF-1α), mammalian target of rapamycin complex 1 (mTORC1), glutamine-fructose amidotransferase 1/2 (GFAT1/2), and transcription factor Myc as key cellular factors to mediate and promote the glutamine metabolic reprogramming in SARS-CoV-2 infected cells. In absence of concrete data available for SARS-CoV-2 induced metabolic reprogramming of glutamine, this study efforts to connect the gaps with available clinical shreds of evidence in SARS-CoV-2 infection with altered glutamine metabolism and hopefully could be beneficial in the designing of strategic methods for therapeutic development with elucidation using in vitro or in vivo approaches.


1997 ◽  
Vol 272 (6) ◽  
pp. G1355-G1364 ◽  
Author(s):  
M. Lin ◽  
R. A. Rippe ◽  
O. Niemela ◽  
G. Brittenham ◽  
H. Tsukamoto

A redox-sensitive nuclear factor, NF-kappa B, induces transcription of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) in macrophages. The present study has investigated the role of iron in NF-kappa B activation and TNF-alpha and IL-6 expression by rat hepatic macrophages (HM). As an in vivo model, cholestatic liver injury was induced in rats by ligation of the common bile duct (BDL). During the first 2 wk after BDL, there was an increase in the hepatic level of thiobarbituric acid-reactive substances (TBARS) that was accompanied by the appearance of protein-malondialdehyde adducts in the periportal region. This increase was reduced after 3 wk. TNF-alpha and IL-6 mRNA levels in HM from the BDL rats were increased at 1 and 2 wk and attenuated at 3 wk. Gel mobility shift assay of HM nuclear extracts demonstrated the similar temporal pattern of enhanced NF-kappa B binding activity. Treatment of the BDL animals with 1,2-dimethyl-3-hydroxypyrid-4-one (L-1), a lipophilic iron chelator, suppressed the increases in hepatic TBARS by 64%, plasma alanine aminotransferase by 45%, and HM TNF-alpha and IL-6 mRNA by > 84%. Concomitantly, the HM NF-kappa B binding activity was reduced close to the level observed in sham-operated rats. Treatment of cultured HM with L-1 also blocked lipopolysaccharide-stimulated NF-kappa B activation and TNF-alpha and IL-6 expression at mRNA and protein levels. These results demonstrate that the iron chelator effectively blocks NF-kappa B activation and coordinate TNF-alpha and IL-6 gene upregulation by HM in cholestatic liver injury or under in vitro lipopolysaccharide stimulation. These findings support a pivotal role for iron in activation of NF-kappa B and cytokine gene expression by HM in vitro and in vivo.


2010 ◽  
Vol 192 (17) ◽  
pp. 4425-4435 ◽  
Author(s):  
Fuzhou Xu ◽  
Ximin Zeng ◽  
Richard D. Haigh ◽  
Julian M. Ketley ◽  
Jun Lin

ABSTRACTThe ferric enterobactin (FeEnt) receptor CfrA is present in the majority ofCampylobacter jejuniisolates and is responsible for high-affinity iron acquisition. Our recent work and that of others strongly suggested the existence of another FeEnt uptake system inCampylobacter. Here we have identified and characterized a new FeEnt receptor (designated CfrB) using bothin vitroandin vivosystems. CfrB, a homolog ofC. jejuniNCTC 11168 Cj0444, shares approximately 34% of amino acid identity with CfrA. Alignment of complete CfrB sequences showed that the CfrB is highly conserved inCampylobacter. Immunoblotting analysis using CfrB-specific antiserum demonstrated that CfrB was dramatically induced under iron-restricted conditions and was produced in the majority ofCampylobacter coli(41 out of 45) and in someC. jejuni(8 out of 32) primary strains from various sources and from geographically diverse areas. All of the CfrB-producingC. colistrains also produced CfrA, which was rarely observed in the testedC. jejunistrains. IsogeniccfrB,cfrA, andcfrA cfrBdouble mutants were constructed in 43 diverseCampylobacterstrains. Growth promotion assays using these mutants demonstrated that CfrB has a major role in FeEnt iron acquisition inC. coli. Chicken colonization experiments indicated that inactivation of thecfrBgene alone greatly reduced and even abolishedCampylobactercolonization of the intestines. A growth assay using CfrB-specific antiserum strongly suggested that specific CfrB antibodies could block the function of CfrB and diminish FeEnt-mediated growth promotion under iron-restricted conditions. Together, this work reveals the complexity of FeEnt systems in the two closely relatedCampylobacterspecies and demonstrates the important role of the new FeEnt receptor CfrB inCampylobacteriron acquisition andin vivocolonization.


1995 ◽  
Vol 73 (S1) ◽  
pp. 1087-1091 ◽  
Author(s):  
Jean-Paul Debeaupuis ◽  
Jacqueline Sarfati ◽  
Hidemitsu Kobayashi ◽  
Drion G. Boucias ◽  
Anne Beauvais ◽  
...  

Aspergillus fumigatus secretes an array of antigenic molecules in vitro and in vivo. Recent progresses have been made in the characterization and standardization of A. fumigatus antigens useful for the serodiagnosis of aspergillosis. The chymotrypsin antigen has been purified and can be utilized for the diagnosis of aspergillosis occurring in patients with an immunocompetent B cell population. In the case of immunosuppressed patients suffering from invasive aspergillosis, new methods have been developed to detect the galactofuran containing antigen in the serum. The chemical configuration of this molecule is now known. In contrast to their potential in diagnosis, very little progress has been made on the study of the biochemical and pathoimmunological role of these antigens during the infection process. Two reasons can be advanced for this lack of understanding of the virulence determinants. First of all, antigens studied have been produced in vitro in a dextrose rich medium where pH reaches a value below 5 at maximal growth. These culture conditions are very different from the nutritional environment of the lung, which is a protein-based medium with a slightly basic pH. Antigens expressed under these nutritional conditions are very different from the ones detected in vitro. Second, A. fumigatus is an opportunistic fungus which is characterized by a multifactorial virulence. Gene disruption strategy is not adequate to discriminate the role of a factor in the virulence of the fungus. In contrast, as shown by the studies on two toxins of A. fumigatus, a direct effect of an antigen can be seen directly when several fungal molecules are tested in conjunction on host cells. Key words: Aspergillus fumigatus, antigen, invasive aspergillosis, galactomannan, protease.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Sign in / Sign up

Export Citation Format

Share Document