Expression of cell volume-regulated kinase h-sgk in pancreatic tissue

2000 ◽  
Vol 279 (5) ◽  
pp. G998-G1002 ◽  
Author(s):  
K. Klingel ◽  
S. Wärntges ◽  
J. Bock ◽  
C. A. Wagner ◽  
M. Sauter ◽  
...  

Transcript levels of the human serine/threonine kinase h-sgk have been found to be highest in pancreas. In the present study, localization and regulation of h-sgk transcription in pancreatic tissue were elucidated. As was apparent from radioactive in situ hybridization, most pancreatic acinar cells expressed high levels of h-sgk mRNA. h-sgk mRNA-positive cells were also found in ductal epithelia but not in pancreatic islets. In biopsy specimens from patients with pancreatitis, h-sgk mRNA levels were decreased in acinar cells but abundant in numerous mononuclear interstitial cells within areas of pancreatic necrosis and fibrosis. As shown by Northern blotting, h-sgk transcription in DAN-G pancreatic tumor cells is upregulated by osmotic cell shrinkage, serum, phorbol esters (phorbol 12,13-didecanoate), and Ca2+ ionophore A-23187 and decreased by staurosporine and cAMP. In conclusion, h-sgk transcription is regulated not only by cell volume but also by serum, protein kinase C stimulation, cAMP, and increase of intracellular Ca2+activity. The kinase may participate not only in normal function of exocrine pancreas but also in fibrosing pancreatitis.

2011 ◽  
Vol 301 (5) ◽  
pp. G896-G904 ◽  
Author(s):  
Sandeep B. Subramanya ◽  
Veedamali S. Subramanian ◽  
V. Thillai Sekar ◽  
Hamid M. Said

Thiamin is important for normal function of pancreatic acinar cells, but little is known about its mechanism of uptake and about the effect of chronic alcohol use on the process. We addressed these issues using freshly isolated rat primary and rat-derived cultured AR42J pancreatic acinar cells as models. Results showed thiamin uptake by both primary and cultured AR42J pancreatic acinar cells to be via a specific carrier-mediated mechanism and that both of the thiamin transporters 1 and 2 (THTR-1 and THTR-2) are expressed in these cells. Chronic alcohol feeding of rats was found to lead to a significant inhibition of carrier-mediated thiamin uptake by pancreatic acinar cells and was associated with a significant reduction in level of expression of THTR-1 and THTR-2 at the protein and mRNA levels. Chronic exposure (96 h) of AR42J cells to alcohol also led to a significant decreased carrier-mediated thiamin uptake, an effect that was associated with a significant decrease in the activity of the human SLC19A2 and SLC19A3 promoters expressed in these cells. We also examined the effect of chronic alcohol feeding of rats on level of expression of key thiamin metabolizing enzymes (thiamin phosphokinase and thiamin pyrophosphatase) as well as on level of expression of the mitochondrial thiamin pyrophosphate transporter of pancreatic acinar cells and observed a significant inhibition in all these parameters. These results demonstrate for the first time that thiamin uptake by pancreatic acinar cells is via a carrier-mediated process and that both the THTR-1 as well as THTR-2 are expressed in these cells. Also, chronic alcohol feeding/exposure inhibits thiamin uptake process and the inhibition is, at least in part, being exerted at the transcriptional level. Furthermore, chronic alcohol feeding also negatively impacts intracellular parameters of thiamin metabolism in pancreatic acinar cells.


2017 ◽  
Vol 28 (15) ◽  
pp. 2146-2154 ◽  
Author(s):  
Rami Khoriaty ◽  
Nancy Vogel ◽  
Mark J. Hoenerhoff ◽  
M. Dolors Sans ◽  
Guojing Zhu ◽  
...  

Mice with germline absence of SEC23B die perinatally, exhibiting massive pancreatic degeneration. We generated mice with tamoxifen-inducible, pancreatic acinar cell–specific Sec23b deletion. Inactivation of Sec23b exclusively in the pancreatic acinar cells of adult mice results in decreased overall pancreatic weights from pancreatic cell loss (decreased pancreatic DNA, RNA, and total protein content), as well as degeneration of exocrine cells, decreased zymogen granules, and alterations in the endoplasmic reticulum (ER), ranging from vesicular ER to markedly expanded cisternae with accumulation of moderate-density content or intracisternal granules. Acinar Sec23b deletion results in induction of ER stress and increased apoptosis in the pancreas, potentially explaining the loss of pancreatic cells and decreased pancreatic weight. These findings demonstrate that SEC23B is required for normal function of pancreatic acinar cells in adult mice.


2020 ◽  
Author(s):  
Miguel Burgos ◽  
Reginald Philippe ◽  
Fabrice Antigny ◽  
Paul Buscaglia ◽  
Emmanuelle Masson ◽  
...  

ABSTRACTSince deregulation of intracellular Ca2+ can lead to intracellular trypsin activation and STIM1 (stromal interaction molecule-1) protein is the main regulator of Ca2+ homeostasis in pancreatic acinar cells, we explored the Ca2+ signaling in 37 STIM1 variants found in three pancreatitis patient cohorts. Extensive functional analysis of one particular variant, p.E152K, identified in three patients, provided a plausible link between dysregulated Ca2+ signaling within pancreatic acinar cells and chronic pancreatitis susceptibility. Specifically, p.E152K, located within the STIM1 EF-hand and sterile α-motif domain, increased the release of Ca2+ from the endoplasmic reticulum in patient-derived fibroblasts and transfected HEK293T cells. This event was mediated by altered STIM1-sarco/endoplasmic reticulum calcium transport ATPase (SERCA) interactions and enhanced SERCA pump activity leading to increased Store Operated Calcium Entry (SOCE). In the pancreatic AR42J cells expressing the p.E152K variant, Ca2+-signaling perturbations correlated with defects in trypsin activation and secretion, and increased cytotoxicity after cholecystokinin stimulation.Summary statementp.E152K-STIM1 variant found in pancreatitis patients leads to intracellular changes in calcium homeostasis through SERCA interaction, enabling intracellular trypsin activation and pancreatic acinar cell death.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
L. Xia ◽  
Z. Xu ◽  
X. Zhou ◽  
F. Bergmann ◽  
N. Grabe ◽  
...  

Abstract Chronic pancreatitis (CP) is associated with elevated plasma levels of bacterial lipopolysaccharide (LPS) and we have demonstrated reduced acinar cell autophagy in human CP tissue. Therefore, we investigated the role of autophagy in experimental endotoxin-induced pancreatic injury and aimed to identify LPS in human CP tissue. Pancreatic Atg7-deficient mice were injected with a single sub-lethal dose of LPS. Expression of autophagy, apoptosis, necroptosis, and inflammatory markers was determined 3 and 24 h later utilizing immunoblotting and immunofluorescence. The presence of LPS in pancreatic tissue from mice and from patients and healthy controls was determined using immunohistochemistry, immunoblots, and chromogenic assay. Mice lacking pancreatic autophagy exhibited local signs of inflammation and were particularly sensitive to the toxic effect of LPS injection as compared to control mice. In response to LPS, Atg7Δpan mice exhibited enhanced vacuolization of pancreatic acinar cells, increase in TLR4 expression coupled to enhanced expression of NF-κΒ, JNK, and pro-inflammatory cytokines by acinar cells and enhanced infiltration by myeloid cells (but not Atg7F/F controls). Cell death was enhanced in Atg7Δpan pancreata, but only necroptosis and trypsin activation was further amplified following LPS injection along with elevated pancreatic LPS. The presence of LPS was identified in the pancreata from all 14 CP patients examined but was absent in the pancreata from all 10 normal controls. Altogether, these results support a potential role for metabolic endotoxemia in the pathogenesis of CP. Moreover, the evidence also supports the notion that autophagy plays a major cytoprotective and anti-inflammatory role in the pancreas, and blunting metabolic endotoxemia-induced CP.


2013 ◽  
Vol 288 (38) ◽  
pp. 27128-27137 ◽  
Author(s):  
Abrahim I. Orabi ◽  
Kamaldeen A. Muili ◽  
Tanveer A. Javed ◽  
Shunqian Jin ◽  
Thottala Jayaraman ◽  
...  

Aberrant Ca2+ signals within pancreatic acinar cells are an early and critical feature in acute pancreatitis, yet it is unclear how these signals are generated. An important mediator of the aberrant Ca2+ signals due to bile acid exposure is the intracellular Ca2+ channel ryanodine receptor. One putative activator of the ryanodine receptor is the nucleotide second messenger cyclic ADP-ribose (cADPR), which is generated by an ectoenzyme ADP-ribosyl cyclase, CD38. In this study, we examined the role of CD38 and cADPR in acinar cell Ca2+ signals and acinar injury due to bile acids using pharmacologic inhibitors of CD38 and cADPR as well as mice deficient in Cd38 (Cd38−/−). Cytosolic Ca2+ signals were imaged using live time-lapse confocal microscopy in freshly isolated mouse acinar cells during perifusion with the bile acid taurolithocholic acid 3-sulfate (TLCS; 500 μm). To focus on intracellular Ca2+ release and to specifically exclude Ca2+ influx, cells were perifused in Ca2+-free medium. Cell injury was assessed by lactate dehydrogenase leakage and propidium iodide uptake. Pretreatment with either nicotinamide (20 mm) or the cADPR antagonist 8-Br-cADPR (30 μm) abrogated TLCS-induced Ca2+ signals and cell injury. TLCS-induced Ca2+ release and cell injury were reduced by 30 and 95%, respectively, in Cd38-deficient acinar cells compared with wild-type cells (p < 0.05). Cd38-deficient mice were protected against a model of bile acid infusion pancreatitis. In summary, these data indicate that CD38-cADPR mediates bile acid-induced pancreatitis and acinar cell injury through aberrant intracellular Ca2+ signaling.


1973 ◽  
Vol 184 (1074) ◽  
pp. 115-119 ◽  

Electrogenic sodium pumps have been described in many excitable tissues, but hitherto not with certainty in epithelial tissues. In the present work it is shown that readmission of potassium to the bathing solution of mouse pancreatic tissue previously deprived of potas­sium, causes a marked hyperpolarization of the acinar cell membrane. This hyperpolariza­tion is abolished reversibly by strophanthin-G. This indicates the presence of electrogenic sodium pumping in pancreatic acinar cells.


2003 ◽  
Vol 285 (5) ◽  
pp. G804-G812 ◽  
Author(s):  
David A. Brown ◽  
James E. Melvin ◽  
David I. Yule

The primary function of pancreatic acinar cells is to secrete digestive enzymes together with a NaCl-rich primary fluid which is later greatly supplemented and modified by the pancreatic duct. A Na+/H+ exchanger(s) [NHE(s)] is proposed to be integral in the process of fluid secretion both in terms of the transcellular flux of Na+ and intracellular pH (pHi) regulation. Multiple NHE isoforms have been identified in pancreatic tissue, but little is known about their individual functions in acinar cells. The Na+/H+ exchange inhibitor 5-( N-ethyl- N-isopropyl) amiloride completely blocked pHi recovery after an NH4Cl-induced acid challenge, confirming a general role for NHE in pHi regulation. The targeted disruption of the Nhe1 gene also completely abolished pHi recovery from an acid load in pancreatic acini in both [Formula: see text]-containing and [Formula: see text]-free solutions. In contrast, the disruption of either Nhe2 or Nhe3 had no effect on pHi recovery. In addition, NHE1 activity was upregulated in response to muscarinic stimulation in wild-type mice but not in NHE1-deficient mice. Fluctuations in pHi could potentially have major effects on Ca2+ signaling following secretagogue stimulation; however, the targeted disruption of Nhe1 was found to have no significant effect on intracellular Ca2+ homeostasis. These data demonstrate that NHE1 is the major regulator of pHi in both resting and muscarinic agonist-stimulated pancreatic acinar cells.


2007 ◽  
Vol 293 (6) ◽  
pp. G1196-G1204 ◽  
Author(s):  
Li-Kang Sun ◽  
Theresia Reding ◽  
Martha Bain ◽  
Mathias Heikenwalder ◽  
Daniel Bimmler ◽  
...  

Cyclooxygenase (COX)-2 is increased in human chronic pancreatitis. We recently demonstrated in a model of chronic pancreatitis (WBN/Kob rat) that inhibition of COX-2 activity reduces and delays pancreatic inflammation and fibrosis. Monocyte chemoattractant protein (MCP)-1 mRNA and PGE2 were significantly reduced, correlating with a decreased infiltration of macrophages. MCP-1 plays an important role in the recruitment of macrophages to the site of tissue injury. The aim of our study is to identify mechanisms by which macrophages and acinar cells maintain an inflammatory reaction. The expression profile of E prostanoid receptors EP1-4 and MCP-1 was analyzed by RT-PCR from pancreatic specimens and AR42J cells. MCP-1 secretion was detected by ELISA from rat pancreatic lobuli. We determined EP1-4 mRNA levels in WBN/Kob rats with chronic pancreatic inflammation. Individual isoforms were highly increased in rat pancreas, concurrent with MCP-1 mRNA expression. In supernatants of pancreatic lobuli and AR42J cells, MCP-1 was detectable by ELISA. In the presence of TNF-α, MCP-1 was upregulated. Coincubation with PGE2 enhanced the TNF-α-induced MCP-1 synthesis significantly. Similarly, TNF-α mRNA was synergistically upregulated by TNF-α and PGE2. Furthermore, the synergistic effect of TNF-α and PGE2 was abolished by inhibition of PKA but not of PKC. We conclude that EP receptors are upregulated during chronic pancreatic inflammation. PGE2 modulates the TNF-α-induced MCP-1 synthesis and secretion from acinar cells. This synergistic effect is controlled by PKA. This mechanism might explain the COX-2-dependent propagation of pancreatic inflammation.


2021 ◽  
pp. 153537022110032
Author(s):  
Yinan Guo ◽  
Weikai Hu ◽  
Xueyan Wang ◽  
Chunyun Li ◽  
Tianyu Cui ◽  
...  

Acute pancreatitis is one of the leading causes of gastrointestinal disorder-related hospitalizations, yet its pathogenesis remains to be fully elucidated. Postsynaptic density protein-95 (PSD-95) is closely associated with tissue inflammation and injury. We aimed to investigate the expression of PSD-95 in pancreatic acinar cells, and its function in regulating the inflammatory response and pancreatic pathological damage in acute pancreatitis. A mouse model of edematous acute pancreatitis was induced with caerulein and lipopolysaccharide in C57BL/6 mice. Tat-N-dimer was injected to inhibit the PSD-95 activity separately, or simultaneously with SB203580, inhibitor of p38 MAPK phosphorylation. Rat pancreatic acinar cells AR42J were cultured with 1 μM caerulein to build a cell model of acute pancreatitis. PSD-95-knockdown and negative control cell lines were constructed by lentiviral transfection of AR42J cells. Paraffin-embedded pancreatic tissue samples were processed for routine HE staining to evaluate the pathological changes of human and mouse pancreatic tissues. Serum amylase and inflammatory cytokine levels were detected with specific ELISA kits. Immunofluorescence, immunohistochemical, Western-blot, and qRT-PCR were used to detect the expression levels of PSD-95, p38, and phosphorylated p38. Our findings showed that PSD-95 is expressed in the pancreatic tissues of humans, C57BL/6 mice, and AR42J cells, primarily in the cytoplasm. PSD-95 expression increased at 2 h, reaching the peak at 6 h in mice and 12 h in AR42J cells. IL-6, IL-8, and TNF-α increased within 2 h of disease induction. The pancreatic histopathologic score was greater in the PSD-95 inhibition group compared with the control ( P < 0.05), while it was lesser when phosphorylation of p38 MAPK was inhibited compared with the PSD-95 inhibition group ( P < 0.05). Moreover, phosphorylation of p38 MAPK increased statistically after PSD-95 knocked-down. In conclusion, PSD-95 effectively influences the pathological damage of the pancreas in acute pancreatitis by affecting the phosphorylation of p38 MAPK.


2021 ◽  
Author(s):  
isidoro Cobo ◽  
Sumit Paliwal ◽  
Julia Melia-Aloma ◽  
Ariadna Torres ◽  
Jaime Martinez-Villarreal ◽  
...  

Tissue-specific differentiation is driven by specialized transcriptional networks. Pancreatic acinar cells crucially rely on the PTF1 complex, and on additional transcription factors, to deploy their transcriptional program. Here, we identify NFIC as a novel regulator of acinar differentiation using a variety of methodological strategies. NFIC binding sites are found at very short distances from NR5A2-bound genomic regions and both proteins co-occur in the same complex. Nfic knockout mice show reduced expression of acinar genes and, in ChIP-seq experiments, NFIC binds the promoters of acinar genes. In addition, NFIC binds to the promoter of, and regulates, genes involved in RNA and protein metabolism; in Nfic knockout mice, p-RS6K1 and p-IEF4E are down-regulated indicating reduced activity of the mTOR pathway. In 266-6 acinar cells, NFIC dampens the ER stress program through its binding to ER stress gene promoters and is required for complete resolution of Tunicamycin-mediated ER stress. Normal human pancreata from subjects with low NFIC mRNA levels display reduced epxression of genes down-regulated in Nfic knockout mice. Consistently, NFIC displays reduced expression upon induced acute pancreatitis and is required for proper recovery after damage. Finally, expression of NFIC is lower in samples of mouse and human pancreatic ductal adenocarcinoma and Nfic knockout mice develop an increased number of mutant Kras-driven pre-neoplastic lesions.


Sign in / Sign up

Export Citation Format

Share Document