Coverslip hypoxia: a novel method for studying cardiac myocyte hypoxia and ischemia in vitro

2004 ◽  
Vol 287 (4) ◽  
pp. H1801-H1812 ◽  
Author(s):  
Kelly R. Pitts ◽  
Christopher F. Toombs

In vitro experimental models designed to study the effects of hypoxia and ischemia typically employ oxygen-depleted media and/or hypoxic chambers. These approaches, however, allow for metabolites to diffuse away into a large volume and may not replicate the high local concentrations that occur in ischemic myocardium in vivo. We describe herein a novel and simple method for creating regional hypoxic and ischemic conditions in neonatal rat cardiac myocyte monolayers. This method consists of creating a localized diffusion barrier by placing a glass coverslip over a portion of the monolayer. The coverslip restricts covered myocytes to a thin film of media while leaving uncovered myocytes free to access the surrounding bulk media volume. Myocytes under the coverslip undergo marked morphology changes over time as assessed by video microscopy. Fluorescence microscopy shows that these changes are accompanied by alterations in mitochondrial membrane potential and plasma membrane dynamics and eventually result in myocyte death. We also show that the metabolic activity of myocytes drives cell necrosis under the coverslip. In addition, the intracellular pH of synchronously contracting myocytes under the coverslip drops rapidly, which further implicates metabolic activity in regulating cell death under the coverslip. In contrast with existing models of hypoxia/ischemia, this technique provides a simple and effective way to create hypoxic/ischemic conditions in vitro. Moreover, we conclude that myocyte death is hastened by the combination of hypoxia, metabolites, and acidosis and is facilitated by a reduction in media volume, which may better represent ischemic conditions in vivo.

2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Natalie A Gude ◽  
Fareheh Firouzi ◽  
Kristine Nguyen ◽  
Christina Payne ◽  
Veronica Sacchi ◽  
...  

Background: The biological significance of c-Kit as a marker of cardiac stem cells, and role(s) of c-Kit+ cells in myocardial development or in response to pathologic injury remain unresolved due to varied findings among investigators and experimental model systems. Alternative experimental models and approaches are needed to achieve a broader perspective of cardiac c-Kit biology that contextualizes discrepant published observations. Objectives: Tracking c-Kit expression using transgenesis overcomes limitations inherent to knock-in reporter models. Two novel, inducible transgenic c-Kit reporter models are presented in this study to further elaborate on myocardial c-Kit biology. Methods: A previously characterized mouse c-Kit promoter segment was engineered to generate a transgenic mouse in which rtTA transactivator is expressed in c-Kit+ cells (c-KitrtTA). c-KitrtTA crossed to Tet-Responsive-Element(TRE)-Histone2B-EGFP or TRE-Cre lines produces the CKH2B and CKCre double transgenic lines, which express doxycycline-inducible H2BEGFP or Cre proteins in c-Kit+ cells. The CKmTmG triple transgenic mouse, arising from CKCre crossed to the ROSAmTmG reporter line, utilizes doxycycline induced recombination to tag c-Kit+ cells irreversibly with membrane bound EGFP. Endogenous c-Kit and transgenic reporter expression was assessed in adult cardiac myocyte and nonmyocyte cells from these mice under resting and cellular stress conditions using immunohistochemistry and flow cytometry. Results: Coincidence of c-Kit and EGFP is observed in approximately 75% of freshly isolated nonmyocyte cells as detected by flow cytometry. A subpopulation of cardiomyocytes express H2BEGFP or mEGFP in the uninjured, doxycycline treated adult heart. H2BEGFP and c-Kit expression increase in myocytes in response to isoproterenol-induced pathologic stress in vivo and in vitro. Conclusion: These c-Kit transgenic reporter models provide sensitive, specific, inducible and persistent tracking of c-Kit promoter activation. Results presented here reveal an unexpected role for c-Kit expression in adult cardiomyocytes. Future studies will use both models to investigate c-Kit expression in all cell types during cardiac formation and repair.


1995 ◽  
Vol 78 (2) ◽  
pp. 433-440 ◽  
Author(s):  
J. J. Greer ◽  
R. J. Reiffenstein ◽  
A. F. Almeida ◽  
J. E. Carter

The effects of sulfide on neonatal rat respiration were studied. Two in vitro experimental models were utilized: the isolated brain stem-spinal cord preparation and the medullary slice preparation containing respiratory rhythm-generating regions from neonatal rats. Plethysmographic measurements of the effects of sulfide on the breathing patterns of unanesthetized neonatal rats were also made to compare the sensitivities of neonatal and adult rats to sulfide toxicity. In vitro, sulfide acted at sites within the ventrolateral medulla to depress the frequency of respiratory rhythmic discharge by approximately 50–60%. However, the neuronal network underlying respiratory rhythmogenesis continued to function in the presence of concentrations of sulfide far beyond those deemed to be lethal in vivo. Intraperitoneal administration of sulfide caused a dose-dependent decrease in the frequency and amplitude of breathing of neonatal rats of all ages (0–19 days postnatal), although the sensitivity to sulfide increased with age. We hypothesize that the rapid suppression of breathing caused by sulfide is due to changes in neuronal excitability within respiratory rhythm-generating centers rather than, as previously hypothesized, to perturbations of cellular oxidative metabolism.


1973 ◽  
Vol 30 (01) ◽  
pp. 138-147 ◽  
Author(s):  
Christopher R. Muirhead

SummaryThe filter loop technique which measures platelet aggregation in vivo in the flowing-blood of the rat was compared to the optical density technique of Born which is carried out in vitro with platelet rich plasma. Using these two experimental models the effect on platelet aggregation of three known inhibitors sulfinpyrazone, dipyridamole and prostaglandin E1, and a novel compound 5-oxo-l-cyclopentene-l-heptanoic acid (AY-16, 804) was determined.The effects on platelet aggregation of the known inhibitors were consistent with information in the literature. Prostaglandin E1 was the most potent inhibitor in both techniques; sulfinpyrazone inhibited aggregation in both models but was less potent than prostaglandin E1. AY-16, 804 exhibited activity in vitro and in vivo similar to that of sulfinpyrazone. Dipyridamole did not inhibit platelet aggregation in vivo and did not inhibit aggregation in vitro in concentrations at which it remained soluble.The filter loop technique is a suitable model for measuring platelet aggregation in the flowing blood of the rat. It is a relatively simple method of determining aggregation and easily adapted to other species.


1986 ◽  
Vol 56 (03) ◽  
pp. 318-322 ◽  
Author(s):  
V Diness ◽  
P B Østergaard

SummaryThe neutralization of a low molecular weight heparin (LHN-1) and conventional heparin (CH) by protamine sulfate has been studied in vitro and in vivo. In vitro, the APTT activity of CH was completely neutralized in parallel with the anti-Xa activity. The APTT activity of LHN-1 was almost completely neutralized in a way similar to the APTT activity of CH, whereas the anti-Xa activity of LHN-1 was only partially neutralized.In vivo, CH 3 mg/kg and LHN-1 7.2 mg/kg was given intravenously in rats. The APTT and anti-Xa activities, after neutralization by protamine sulfate in vivo, were similar to the results in vitro. In CH treated rats no haemorrhagic effect in the rat tail bleeding test and no antithrombotic effect in the rat stasis model was found at a protamine sulfate to heparin ratio of about 1, which neutralized APTT and anti-Xa activities. In LHN-1 treated rats the haemorrhagic effect was neutralized when APTT was close to normal whereas higher doses of protamine sulfate were required for neutralization of the antithrombotic effect. This probably reflects the fact that in most experimental models higher doses of heparin are needed to induce bleeding than to prevent thrombus formation. Our results demonstrate that even if complete neutralization of APTT and anti-Xa activities were not seen in LHN-1 treated rats, the in vivo effects of LHN-1 could be neutralized as efficiently as those of conventional heparin. The large fall in blood pressure caused by high doses of protamine sulfate alone was prevented by the prior injection of LHN-1.


2018 ◽  
Vol 24 (10) ◽  
pp. 1138-1147
Author(s):  
Bruno Rivas-Santiago ◽  
Flor Torres-Juarez

Tuberculosis is an ancient disease that has become a serious public health issue in recent years, although increasing incidence has been controlled, deaths caused by Mycobacterium tuberculosis have been accentuated due to the emerging of multi-drug resistant strains and the comorbidity with diabetes mellitus and HIV. This situation is threatening the goals of World Health Organization (WHO) to eradicate tuberculosis in 2035. WHO has called for the creation of new drugs as an alternative for the treatment of pulmonary tuberculosis, among the plausible molecules that can be used are the Antimicrobial Peptides (AMPs). These peptides have demonstrated remarkable efficacy to kill mycobacteria in vitro and in vivo in experimental models, nevertheless, these peptides not only have antimicrobial activity but also have a wide variety of functions such as angiogenesis, wound healing, immunomodulation and other well-described roles into the human physiology. Therapeutic strategies for tuberculosis using AMPs must be well thought prior to their clinical use; evaluating comorbidities, family history and risk factors to other diseases, since the wide function of AMPs, they could lead to collateral undesirable effects.


2018 ◽  
Vol 18 (4) ◽  
pp. 246-255 ◽  
Author(s):  
Lara Termini ◽  
Enrique Boccardo

In vitro culture of primary or established cell lines is one of the leading techniques in many areas of basic biological research. The use of pure or highly enriched cultures of specific cell types obtained from different tissues and genetics backgrounds has greatly contributed to our current understanding of normal and pathological cellular processes. Cells in culture are easily propagated generating an almost endless source of material for experimentation. Besides, they can be manipulated to achieve gene silencing, gene overexpression and genome editing turning possible the dissection of specific gene functions and signaling pathways. However, monolayer and suspension cultures of cells do not reproduce the cell type diversity, cell-cell contacts, cell-matrix interactions and differentiation pathways typical of the three-dimensional environment of tissues and organs from where they were originated. Therefore, different experimental animal models have been developed and applied to address these and other complex issues in vivo. However, these systems are costly and time consuming. Most importantly the use of animals in scientific research poses moral and ethical concerns facing a steadily increasing opposition from different sectors of the society. Therefore, there is an urgent need for the development of alternative in vitro experimental models that accurately reproduce the events observed in vivo to reduce the use of animals. Organotypic cultures combine the flexibility of traditional culture systems with the possibility of culturing different cell types in a 3D environment that reproduces both the structure and the physiology of the parental organ. Here we present a summarized description of the use of epithelial organotypic for the study of skin physiology, human papillomavirus biology and associated tumorigenesis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ning Zhou ◽  
Lei Wang ◽  
Ping Fu ◽  
Zihao Cui ◽  
Yuhang Ge ◽  
...  

Abstract Background Oligovascular niche mediates interactions between cerebral endothelial cells and oligodendrocyte precursor cells (OPCs). Disruption of OPC-endothelium trophic coupling may aggravate the progress of cerebral white matter injury (WMI) because endothelial cells could not provide sufficient support under diseased conditions. Endothelial progenitor cells (EPCs) have been reported to ameliorate WMI in the adult brain by boosting oligovascular remodeling. It is necessary to clarify the role of the conditioned medium from hypoxic endothelial cells preconditioned EPCs (EC-pEPCs) in WMI since EPCs usually were recruited and play important roles under blood-brain barrier disruption. Here, we investigated the effects of EC-pEPCs on oligovascular remodeling in a neonatal rat model of WMI. Methods In vitro, OPC apoptosis induced by the conditioned medium from oxygen-glucose deprivation-injured brain microvascular endothelial cells (OGD-EC-CM) was analyzed by TUNEL and FACS. The effects of EPCs on EC damage and the expression of cytomokine C-X-C motif ligand 12 (CXCL12) were examined by western blot and FACS. The effect of the CM from EC-pEPCs against OPC apoptosis was also verified by western blot and silencing RNA. In vivo, P3 rat pups were subjected to right common carotid artery ligation and hypoxia and treated with EPCs or EC-pEPCs at P7, and then angiogenesis and myelination together with cognitive outcome were evaluated at the 6th week. Results In vitro, EPCs enhanced endothelial function and decreased OPC apoptosis. Meanwhile, it was confirmed that OGD-EC-CM induced an increase of CXCL12 in EPCs, and CXCL12-CXCR4 axis is a key signaling since CXCR4 knockdown alleviated the anti-apoptosis effect of EPCs on OPCs. In vivo, the number of EPCs and CXCL12 protein level markedly increased in the WMI rats. Compared to the EPCs, EC-pEPCs significantly decreased OPC apoptosis, increased vascular density and myelination in the corpus callosum, and improved learning and memory deficits in the neonatal rat WMI model. Conclusions EC-pEPCs more effectively promote oligovascular remodeling and myelination via CXCL12-CXCR4 axis in the neonatal rat WMI model.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3651
Author(s):  
Alexandru Blidisel ◽  
Iasmina Marcovici ◽  
Dorina Coricovac ◽  
Florin Hut ◽  
Cristina Adriana Dehelean ◽  
...  

Hepatocellular carcinoma (HCC), the most frequent form of primary liver carcinoma, is a heterogenous and complex tumor type with increased incidence, poor prognosis, and high mortality. The actual therapeutic arsenal is narrow and poorly effective, rendering this disease a global health concern. Although considerable progress has been made in terms of understanding the pathogenesis, molecular mechanisms, genetics, and therapeutical approaches, several facets of human HCC remain undiscovered. A valuable and prompt approach to acquire further knowledge about the unrevealed aspects of HCC and novel therapeutic candidates is represented by the application of experimental models. Experimental models (in vivo and in vitro 2D and 3D models) are considered reliable tools to gather data for clinical usability. This review offers an overview of the currently available preclinical models frequently applied for the study of hepatocellular carcinoma in terms of initiation, development, and progression, as well as for the discovery of efficient treatments, highlighting the advantages and the limitations of each model. Furthermore, we also focus on the role played by computational studies (in silico models and artificial intelligence-based prediction models) as promising novel tools in liver cancer research.


2021 ◽  
Vol 9 (4) ◽  
pp. 868
Author(s):  
Max Maurin ◽  
Florence Fenollar ◽  
Oleg Mediannikov ◽  
Bernard Davoust ◽  
Christian Devaux ◽  
...  

SARS-CoV-2 is currently considered to have emerged from a bat coronavirus reservoir. However, the real natural cycle of this virus remains to be elucidated. Moreover, the COVID-19 pandemic has led to novel opportunities for SARS-CoV-2 transmission between humans and susceptible animal species. In silico and in vitro evaluation of the interactions between the SARS-CoV-2 spike protein and eucaryotic angiotensin-converting enzyme 2 (ACE2) receptor have tentatively predicted susceptibility to SARS-CoV-2 infection of several animal species. Although useful, these data do not always correlate with in vivo data obtained in experimental models or during natural infections. Other host biological properties may intervene such as the body temperature, level of receptor expression, co-receptor, restriction factors, and genetic background. The spread of SARS-CoV-2 also depends on the extent and duration of viral shedding in the infected host as well as population density and behaviour (group living and grooming). Overall, current data indicate that the most at-risk interactions between humans and animals for COVID-19 infection are those involving certain mustelids (such as minks and ferrets), rodents (such as hamsters), lagomorphs (especially rabbits), and felines (including cats). Therefore, special attention should be paid to the risk of SARS-CoV-2 infection associated with pets.


Parasitologia ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 50-60
Author(s):  
Veronica Rodriguez Fernandez ◽  
Giovanni Casini ◽  
Fabrizio Bruschi

Ocular toxoplasmosis (OT) is caused by the parasite Toxoplasma gondii and affects many individuals throughout the world. Infection may occur through congenital or acquired routes. The parasites enter the blood circulation and reach both the retina and the retinal pigment epithelium, where they may cause cell damage and cell death. Different routes of access are used by T. gondii to reach the retina through the retinal endothelium: by transmission inside leukocytes, as free parasites through a paracellular route, or after endothelial cell infection. A main feature of OT is the induction of an important inflammatory state, and the course of infection has been shown to be influenced by the host immunogenetics. On the other hand, there is evidence that the T. gondii phenotype also has an impact on the distribution of the pathology in different areas. Although considerable knowledge has been acquired on OT, a deeper knowledge of its mechanisms is necessary to provide new, more targeted treatment strategies. In particular, in addition to in vitro and in vivo experimental models, organotypic, ex vivo retinal explants may be useful in this direction.


Sign in / Sign up

Export Citation Format

Share Document