Abstract 187: c-Kit Biology Revealed by Two Transgenic Reporter Models.

2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Natalie A Gude ◽  
Fareheh Firouzi ◽  
Kristine Nguyen ◽  
Christina Payne ◽  
Veronica Sacchi ◽  
...  

Background: The biological significance of c-Kit as a marker of cardiac stem cells, and role(s) of c-Kit+ cells in myocardial development or in response to pathologic injury remain unresolved due to varied findings among investigators and experimental model systems. Alternative experimental models and approaches are needed to achieve a broader perspective of cardiac c-Kit biology that contextualizes discrepant published observations. Objectives: Tracking c-Kit expression using transgenesis overcomes limitations inherent to knock-in reporter models. Two novel, inducible transgenic c-Kit reporter models are presented in this study to further elaborate on myocardial c-Kit biology. Methods: A previously characterized mouse c-Kit promoter segment was engineered to generate a transgenic mouse in which rtTA transactivator is expressed in c-Kit+ cells (c-KitrtTA). c-KitrtTA crossed to Tet-Responsive-Element(TRE)-Histone2B-EGFP or TRE-Cre lines produces the CKH2B and CKCre double transgenic lines, which express doxycycline-inducible H2BEGFP or Cre proteins in c-Kit+ cells. The CKmTmG triple transgenic mouse, arising from CKCre crossed to the ROSAmTmG reporter line, utilizes doxycycline induced recombination to tag c-Kit+ cells irreversibly with membrane bound EGFP. Endogenous c-Kit and transgenic reporter expression was assessed in adult cardiac myocyte and nonmyocyte cells from these mice under resting and cellular stress conditions using immunohistochemistry and flow cytometry. Results: Coincidence of c-Kit and EGFP is observed in approximately 75% of freshly isolated nonmyocyte cells as detected by flow cytometry. A subpopulation of cardiomyocytes express H2BEGFP or mEGFP in the uninjured, doxycycline treated adult heart. H2BEGFP and c-Kit expression increase in myocytes in response to isoproterenol-induced pathologic stress in vivo and in vitro. Conclusion: These c-Kit transgenic reporter models provide sensitive, specific, inducible and persistent tracking of c-Kit promoter activation. Results presented here reveal an unexpected role for c-Kit expression in adult cardiomyocytes. Future studies will use both models to investigate c-Kit expression in all cell types during cardiac formation and repair.

2018 ◽  
Vol 18 (4) ◽  
pp. 246-255 ◽  
Author(s):  
Lara Termini ◽  
Enrique Boccardo

In vitro culture of primary or established cell lines is one of the leading techniques in many areas of basic biological research. The use of pure or highly enriched cultures of specific cell types obtained from different tissues and genetics backgrounds has greatly contributed to our current understanding of normal and pathological cellular processes. Cells in culture are easily propagated generating an almost endless source of material for experimentation. Besides, they can be manipulated to achieve gene silencing, gene overexpression and genome editing turning possible the dissection of specific gene functions and signaling pathways. However, monolayer and suspension cultures of cells do not reproduce the cell type diversity, cell-cell contacts, cell-matrix interactions and differentiation pathways typical of the three-dimensional environment of tissues and organs from where they were originated. Therefore, different experimental animal models have been developed and applied to address these and other complex issues in vivo. However, these systems are costly and time consuming. Most importantly the use of animals in scientific research poses moral and ethical concerns facing a steadily increasing opposition from different sectors of the society. Therefore, there is an urgent need for the development of alternative in vitro experimental models that accurately reproduce the events observed in vivo to reduce the use of animals. Organotypic cultures combine the flexibility of traditional culture systems with the possibility of culturing different cell types in a 3D environment that reproduces both the structure and the physiology of the parental organ. Here we present a summarized description of the use of epithelial organotypic for the study of skin physiology, human papillomavirus biology and associated tumorigenesis.


2004 ◽  
Vol 287 (4) ◽  
pp. H1801-H1812 ◽  
Author(s):  
Kelly R. Pitts ◽  
Christopher F. Toombs

In vitro experimental models designed to study the effects of hypoxia and ischemia typically employ oxygen-depleted media and/or hypoxic chambers. These approaches, however, allow for metabolites to diffuse away into a large volume and may not replicate the high local concentrations that occur in ischemic myocardium in vivo. We describe herein a novel and simple method for creating regional hypoxic and ischemic conditions in neonatal rat cardiac myocyte monolayers. This method consists of creating a localized diffusion barrier by placing a glass coverslip over a portion of the monolayer. The coverslip restricts covered myocytes to a thin film of media while leaving uncovered myocytes free to access the surrounding bulk media volume. Myocytes under the coverslip undergo marked morphology changes over time as assessed by video microscopy. Fluorescence microscopy shows that these changes are accompanied by alterations in mitochondrial membrane potential and plasma membrane dynamics and eventually result in myocyte death. We also show that the metabolic activity of myocytes drives cell necrosis under the coverslip. In addition, the intracellular pH of synchronously contracting myocytes under the coverslip drops rapidly, which further implicates metabolic activity in regulating cell death under the coverslip. In contrast with existing models of hypoxia/ischemia, this technique provides a simple and effective way to create hypoxic/ischemic conditions in vitro. Moreover, we conclude that myocyte death is hastened by the combination of hypoxia, metabolites, and acidosis and is facilitated by a reduction in media volume, which may better represent ischemic conditions in vivo.


1990 ◽  
Vol 36 (9) ◽  
pp. 1638-1641 ◽  
Author(s):  
S C Kazmierczak ◽  
W J Castellani ◽  
F Van Lente ◽  
E D Hodges ◽  
B Udis

Abstract We investigated the effect of reticulocytosis on the lactate dehydrogenase (LD; EC 1.1.1.27) isoenzyme LD1/LD2 ratio in patients with and without evidence of hemolytic disease. Analysis of sera from patients with reticulocytosis and in vivo hemolysis showed a mean LD1/LD2 ratio of 0.92 compared with a ratio of 0.69 in patients with in vivo hemolysis and normal reticulocyte counts. Determination of LD isoenzymes in erythrocyte lysate revealed significantly increased LD1/LD2 ratios for patients with marked reticulocytosis compared with those for patients with normal-to-minimal increases in reticulocytes. Finally, separation of mature erythrocytes and reticulocytes by flow cytometry revealed marked differences in the LD1/LD2 isoenzyme distribution between these two cell types. The ability of hemolysis to cause a "flipped" LD1/LD2 ratio is dependent on the proportion of the hemolyzed cells that are reticulocytes.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 188-188
Author(s):  
Kyle A Beckwith ◽  
Frank W Frissora ◽  
Matthew R Stefanovski ◽  
Jutta Deckert ◽  
Carlo M Croce ◽  
...  

Abstract Abstract 188 BACKGROUND: Introduction of the anti-CD20 antibody rituximab has led to remarkable progress in the development of targeted therapies for CLL and other B-cell malignancies. Despite prolonging patient survival, therapies targeting CD20 have not been curative. In recent years, alternative targets for therapeutic antibodies have emerged. One of the most promising targets has been CD37, which is highly expressed on malignant B-cells in chronic lymphocytic leukemia (CLL) and non-Hodgkin's lymphoma. The recent interest in this target has led to the generation of novel anti-CD37 therapeutics that could benefit from more extensive preclinical evaluation. However, preclinical development of these agents has been limited by the absence of appropriate leukemia animal models that provide targets expressing human CD37 (hCD37). Here we describe the development and characterization of a transgenic mouse where CLL-like leukemic B-cells express hCD37 and aggressively transplant into syngenic hosts. We demonstrate the utility of this unique mouse model by evaluating the in vivo efficacy of IMGN529, a novel antibody-drug conjugate targeting hCD37 that consists of the CD37-targeting K7153A antibody linked to the maytansinoid DM1 via the thioether SMCC linker. METHODS: The hCD37 transgenic mouse (hCD37-Tg) founder lines were generated by conventional methodology at the OSU Transgenic Facility. B-cell specific expression of hCD37 is driven by immunoglobulin heavy chain promoter and Ig-μ enhancer elements. Founder lines were evaluated by RT-PCR and flow cytometry to confirm RNA and protein expression, respectively. These lines were then crossed with the EμTCL1 mouse model of CLL to generate hCD37xTCL1 mice that develop CD5+CD19+hCD37+ leukemia. For in vivo studies, splenocytes from a leukemic hCD37xTCL1 donor were injected i.v. into healthy hCD37-Tg mice. Mice were randomly assigned to the following treatment groups (n=8–10 per group): IMGN529 conjugate, its K7153A antibody component, or negative controls (isotype antibody-DM1 conjugate or trastuzumab). Upon diagnosis of leukemia, a 10 mg/kg dose was administered i.p. and repeat doses were given 2 times per week for 3 weeks (70 mg/kg total). Peripheral blood disease was monitored by flow cytometry, using counting beads to obtain the absolute number of leukemic CD5+CD19+ B-cells. CD37 expression levels were determined by quantitative flow cytometry. In vitro cytotoxicity was evaluated after 24 hour incubation by flow cytometry with Annexin V and propidium iodide staining. RESULTS: IMGN529 and its K7153A antibody component demonstrated comparable in vitro activity against freshly isolated human CLL cells even in the absence of cross-linking agents (mean IMGN529 cytotoxicity=50.04% vs. 48.85% for K7153A; p=0.175; n=9). Both compounds also demonstrated cytotoxicity against hCD37 Tg B-cells ex vivo in a cross-linking dependent manner, and while expression of hCD37 in hCD37-Tg animals was B-cell specific, the expression levels were substantially lower than those observed in human CLL cells. In vivo studies with transferred hCD37xTCL1 splenocytes demonstrated rapid and complete depletion of CD5+CD19+ leukemic B-cells in response to IMGN529 conjugate, but not K7153A antibody treatment. After 1 week of IMGN529 treatment, peripheral blood leukemia was nearly undetectable and previously detected massive splenomegaly was no longer palpable. In contrast, leukemic counts and spleen sizes continued to increase in control cohorts. CONCLUSIONS: In summary, our group has generated a mouse model that develops a transplantable CD5+CD19+ leukemia expressing hCD37. We demonstrate the utility of this model for both in vitro and in vivo testing of therapeutics targeting hCD37. In addition, preclinical mouse studies expose the robust anti-leukemic effects of IMGN529 in this in vivo model of aggressive B-cell malignancy, despite the relatively low expression of hCD37 on the leukemic B-cells. Our engraftment model shows that IMGN529 is capable of eliminating widespread and highly proliferative mouse leukemia by a mechanism that is both CD37 antigen and conjugate dependent. Therefore, we propose that this novel therapeutic may also exhibit substantial efficacy in a wide range of human B-cell malignancies, even those with relatively low CD37 expression. [This work was supported by NIH (NM, JCB), LLS (NM, JCB) and Pelotonia (KAB)]. Disclosures: Deckert: ImmunoGen Inc.: Employment.


2020 ◽  
Author(s):  
Brian Jurgielewicz ◽  
Yao Yao ◽  
Steven L. Stice

Abstract Background : Extracellular vesicles (EVs) are nanosized vesicles naturally secreted from cells responsible for intercellular communication and delivery of proteins, lipids, and other genetic material. Ultimately, EVs could provide innate therapeutic contents and loaded therapeutic payloads such as small molecules and gene therapy vectors to recipient cells. However, comparative kinetic measures that can be used to quantify and ultimately optimize delivery and uptake of EV payloads are lacking. We investigated both dose and time effects on EV uptake and evaluated the potential specificity of EV uptake to better understand the kinetics and uptake of human embryonic kidney (HEK293T) derived EVs. Results : Utilizing an imaging flow cytometry platform (IFC), HEK293T EV uptake was analyzed. HEK293T EV uptake was dose and time dependent with a minimum threshold dose of 6,000 EVs per cell at 4 hours of co-culture. HEK293T EV uptake was inhibited when co-cultured with recipient cells at 4°C or with pre-fixed recipient cells. By co-culturing HEK293T EVs with cell lines from various germ layers, HEK293T EVs were taken up at higher quantities by HEK293T cells. Lastly, human neural stem cells (hNSCs) internalized significantly more HEK293T EVs relative to mature neurons. Conclusions : Imaging flow cytometry is a quantitative, high throughput, and versatile platform to quantify the kinetics of EV uptake. Utilizing this platform, dose and time variables have been implicated to affect EV uptake measurements making standardization of in vitro and in vivo assays vital for the translation of EVs into the clinic. In this study, we quantified the selectivity of EV uptake between a variety of cell types in vitro and found that EVs were internalized at higher quantities by cells of the same origin. The characterization of HEK293T EV uptake in vitro, notably specificity, dose response, and kinetic assays should be used to help inform and develop EV based therapeutics.


2007 ◽  
Vol 75 (11) ◽  
pp. 5148-5157 ◽  
Author(s):  
Laetitia Breuilh ◽  
François Vanhoutte ◽  
Josette Fontaine ◽  
Caroline M. W. van Stijn ◽  
Isabelle Tillie-Leblond ◽  
...  

ABSTRACT Galectin-3 (Gal-3) is a multifunctional β-galactoside-binding lectin that senses self-derived and microbial glycoconjugates. Although Gal-3 is important in immune reactions and host defense in some experimental models, the function of Gal-3 during helminthic diseases (e.g., schistosomiasis) is still elusive. We show that, compared to wild-type Schistosoma mansoni-infected mice, infected Gal-3−/− mice have a reduced number of T and B lymphocytes in the spleen, develop reduced liver granulomas at 7 weeks (acute phase) and 14 weeks (chronic phase) postinfection, and mount a biased cellular and humoral Th1 response. In an attempt to understand this latter phenomenon, we studied the role of endogenous Gal-3 in dendritic cells (DCs), the most potent antigen-presenting cells, both in vitro and in vivo. Although Gal-3 deficiency in DCs does not impact their differentiation and maturation processes, it greatly influences the strength (but not the nature) of the adaptive immune response that they trigger, suggesting that Gal-3 deficiency in some other cell types may be important during murine schistosomiasis. As a whole, this study implies that Gal-3 is a modulator of the immune/inflammatory responses during helminthic infection and reveals for the first time that Gal-3 expression in DCs is pivotal to control the magnitude of T-lymphocyte priming.


2014 ◽  
Vol 369 (1650) ◽  
pp. 20130468 ◽  
Author(s):  
Pavithra L. Chavali ◽  
Monika Pütz ◽  
Fanni Gergely

The centrosome, a key microtubule organizing centre, is composed of centrioles, embedded in a protein-rich matrix. Centrosomes control the internal spatial organization of somatic cells, and as such contribute to cell division, cell polarity and migration. Upon exiting the cell cycle, most cell types in the human body convert their centrioles into basal bodies, which drive the assembly of primary cilia, involved in sensing and signal transduction at the cell surface. Centrosomal genes are targeted by mutations in numerous human developmental disorders, ranging from diseases exclusively affecting brain development, through global growth failure syndromes to diverse pathologies associated with ciliary malfunction. Despite our much-improved understanding of centrosome function in cellular processes, we know remarkably little of its role in the organismal context, especially in mammals. In this review, we examine how centrosome dysfunction impacts on complex physiological processes and speculate on the challenges we face when applying knowledge generated from in vitro and in vivo model systems to human development.


2017 ◽  
Author(s):  
Guillaume Jacquemet ◽  
Ilkka Paatero ◽  
Alexandre F. Carisey ◽  
Artur Padzik ◽  
Jordan S. Orange ◽  
...  

AbstractFilopodia are commonly observed cellular protrusions in vitro and in vivo. Defective filopodia formation is linked to several pathologies including cancer, wherein actively protruding filopodia, at the invasive front, and filopodia-mediated probing of the microenvironment accompanies cancer cell dissemination. Despite wide biological significance, delineating the function of these finger-like protrusions in more complex systems remains technically challenging, particularly hindered by lack of compatible methods to quantify filopodia properties. Here, we present FiloQuant, a freely available ImageJ plugin, to detect filopodia and filopodia-like protrusions in both fixed and live-cell microscopy data. We demonstrate that FiloQuant can extract quantifiable information including protrusion dynamics, density and length from multiple cell types and in a range of microenvironments, such as during collective or single cancer cell migration in 2D and 3D, in fixed neuronal cultures, in activated natural killer cells and in sprouting endothelial cells in vivo. In cellular models of breast ductal carcinoma in situ (DCIS) we reveal a link between filopodia formation at the cell-matrix interface, during collective invasion and in 3D tumour spheroids, with the previously reported local invasive potential of these breast cancer models in vivo. Finally, using intravital microscopy, we observed that tumour spheroids display prominent filopodia in vivo, supporting a potential role for these protrusions during tumorigenesis.


2003 ◽  
Vol 178 (2) ◽  
pp. 177-193 ◽  
Author(s):  
R Zhou ◽  
D Diehl ◽  
A Hoeflich ◽  
H Lahm ◽  
E Wolf

IGFs have multiple functions regarding cellular growth, survival and differentiation under different physiological and pathological conditions. IGF effects are modulated systemically and locally by six high-affinity IGF-binding proteins (IGFBP-1 to -6). Despite their structural similarity, each IGFBP has unique properties and exhibits specific functions. IGFBP-4, the smallest IGFBP, exists in both non-glycosylated and N-glycosylated forms in all biological fluids. It is expressed by a wide range of cell types and tIssues, and its expression is regulated by different mechanisms in a cell type-specific manner. IGFBP-4 binds IGF-I and IGF-II with similar affinities and inhibits their actions under almost all in vitro and in vivo conditions. In this review, we summarize the available data regarding the following aspects of IGFBP-4: genomic organization, protein structure-function relationship, expression and its regulation, as well as IGF-dependent and -independent actions. The biological significance of IGFBP-4 for reproductive physiology, bone formation, renal pathophysiology and cancer is discussed.


2011 ◽  
Vol 31 (6) ◽  
pp. 1354-1370 ◽  
Author(s):  
Nektaria Nicolakakis ◽  
Edith Hamel

The ability of the brain to locally augment glucose delivery and blood flow during neuronal activation, termed neurometabolic and neurovascular coupling, respectively, is compromised in Alzheimer's disease (AD). Since perfusion deficits may hasten clinical deterioration and have been correlated with negative treatment outcome, strategies to improve the cerebral circulation should form an integral element of AD therapeutic efforts. These efforts have yielded several experimental models, some of which constitute AD models proper, others which specifically recapture the AD cerebrovascular pathology, characterized by anatomical alterations in brain vessel structure, as well as molecular changes within vascular smooth muscle cells and endothelial cells forming the blood– brain barrier. The following paper will present the elements of AD neurovascular dysfunction and review the in vitro and in vivo model systems that have served to deepen our understanding of it. It will also critically evaluate selected groups of compounds, the FDA-approved cholinesterase inhibitors and thiazolidinediones, for their ability to correct neurovascular dysfunction in AD patients and models. These and several others are emerging as compounds with pleiotropic actions that may positively impact dysfunctional cerebrovascular, glial, and neuronal networks in AD.


Sign in / Sign up

Export Citation Format

Share Document