scholarly journals COPD is deleterious for pericytes: implications during training-induced angiogenesis in skeletal muscle

2020 ◽  
Vol 319 (5) ◽  
pp. H1142-H1151
Author(s):  
Léo Blervaque ◽  
Pascal Pomiès ◽  
Elisa Rossi ◽  
Matthias Catteau ◽  
Adeline Blandinières ◽  
...  

This work confirms the previously reported impairment in the functional response to exercise training of patients with COPD compared with SHS. Moreover, it shows for the first time that pericyte coverage of the skeletal capillaries is drastically reduced in patients with COPD compared with SHS during training-induced angiogenesis. Finally, it provides experimental evidence that circulating factors are involved in the impaired pericyte coverage of patients with COPD.

2003 ◽  
Vol 284 (5) ◽  
pp. H1668-H1678 ◽  
Author(s):  
Pamela G. Lloyd ◽  
Barry M. Prior ◽  
Hsiao T. Yang ◽  
Ronald L. Terjung

Angiogenesis occurs in skeletal muscle in response to exercise training. To gain insight into the regulation of this process, we evaluated the mRNA expression of factors implicated in angiogenesis over the course of a training program. We studied sedentary control ( n = 17) rats and both sedentary ( n = 18) and exercise-trained ( n = 48) rats with bilateral femoral artery ligation. Training consisted of treadmill exercise (4 times/day, 1–24 days). Basal mRNA expression in sedentary control muscle was inversely related to muscle vascularity. Angiogenesis was histologically evident in trained white gastrocnemius muscle by day 12. Training produced initial three- to sixfold increases in VEGF, VEGF receptors (KDR and Flt), the angiopoietin receptor (Tie-2), and endothelial nitric oxide synthase mRNA, which dissipated before the increase in capillarity, and a substantial (30- to 50-fold) but transient upregulation of monocyte chemoattractant protein 1 mRNA. These results emphasize the importance of early events in regulating angiogenesis. However, we observed a sustained elevation of the angiopoietin 2-to-angiopoietin 1 ratio, suggesting continued vascular destabilization. The response to exercise was (in general) tempered in high-oxidative muscles. These findings place importance on cellular events coupled to the onset of angiogenesis.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Léo Blervaque ◽  
Emilie Passerieux ◽  
Pascal Pomiès ◽  
Matthias Catteau ◽  
Nelly Héraud ◽  
...  

Abstract Chronic obstructive pulmonary disease (COPD) is associated with exercise intolerance and limits the functional gains in response to exercise training in patients compared to sedentary healthy subjects (SHS). The blunted skeletal muscle angiogenesis previously observed in COPD patients has been linked to these limited functional improvements, but its underlying mechanisms, as well as the potential role of oxidative stress, remain poorly understood. Therefore, we compared ultrastructural indexes of angiogenic process and capillary remodelling by transmission electron microscopy in 9 COPD patients and 7 SHS after 6 weeks of individualized moderate-intensity endurance training. We also assessed oxidative stress by plasma-free and esterified isoprostane (F2-IsoP) levels in both groups. We observed a capillary basement membrane thickening in COPD patients only (p = 0.008) and abnormal variations of endothelial nucleus density in response to exercise training in these patients when compared to SHS (p = 0.042). COPD patients had significantly fewer occurrences of pericyte/endothelium interdigitations, a morphologic marker of capillary maturation, than SHS (p = 0.014), and significantly higher levels of F2-IsoP (p = 0.048). Last, the changes in pericyte/endothelium interdigitations and F2-IsoP levels in response to exercise training were negatively correlated (r = − 0.62, p = 0.025). This study is the first to show abnormal capillary remodelling and to reveal impairments during the whole process of angiogenesis (capillary creation and maturation) in COPD patients. Trial registration NCT01183039 & NCT01183052, both registered 7 August 2010 (retrospectively registered).


2019 ◽  
Vol 316 (5) ◽  
pp. E931-E939 ◽  
Author(s):  
Jin-Ho Koh ◽  
Chad R. Hancock ◽  
Dong-Ho Han ◽  
John O. Holloszy ◽  
K. Sreekumaran Nair ◽  
...  

The objective of this study is to determine whether AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), or peroxisome proliferator-activated receptor β (PPARβ) can independently mediate the increase of glucose transporter type 4 (GLUT4) expression that occurs in response to exercise training. We found that PPARβ can regulate GLUT4 expression without PGC-1α. We also found AMPK and PPARβ are important for maintaining normal physiological levels of GLUT4 protein in the sedentary condition as well following exercise training. However, AMPK and PPARβ are not essential for the increase in GLUT4 protein expression that occurs in response to exercise training. We discovered that AMPK activation increases PPARβ via myocyte enhancer factor 2A (MEF2A), which acted as a transcription factor for PPARβ. Furthermore, exercise training increases the cooperation of AMPK and PPARβ to regulate glucose uptake. In conclusion, cooperation between AMPK and PPARβ via NRF-1/MEF2A pathway enhances the exercise training mediated adaptive increase in GLUT4 expression and subsequent glucose uptake in skeletal muscle.


2021 ◽  
Author(s):  
Caoileann H. Murphy ◽  
Chris McGlory

AbstractMaster athletes perform high volumes of exercise training yet display lower levels of physical functioning and exercise performance when compared with younger athletes. Several reports in the clinical literature show that long chain n-3 polyunsaturated fatty acid (LC n-3 PUFA) ingestion promotes skeletal muscle anabolism and strength in untrained older persons. There is also evidence that LC n-3 PUFA ingestion improves indices of muscle recovery following damaging exercise in younger persons. These findings suggest that LC n-3 PUFA intake could have an ergogenic effect in master athletes. However, the beneficial effect of LC n-3 PUFA intake on skeletal muscle in response to exercise training in both older and younger persons is inconsistent and, in some cases, generated from low-quality studies or those with a high risk of bias. Other factors such as the choice of placebo and health status of participants also confound interpretation of existing reports. As such, when considered on balance, the available evidence does not indicate that ingestion of LC n-3 PUFAs above current population recommendations (250–500 mg/day; 2 portions of oily fish per week) enhances exercise performance or recovery from exercise training in master athletes. Further work is now needed related to how the dose, duration, and co-ingestion of LC n-3 PUFAs with other nutrients such as amino acids impact the adaptive response to exercise training. This work should also consider how LC n-3 PUFA supplementation may differentially alter the lipid profile of cellular membranes of key regulatory sites such as the sarcolemma, mitochondria, and sarcoplasmic reticulum.


2013 ◽  
Vol 24 (6) ◽  
pp. 920-927 ◽  
Author(s):  
R. A. Casuso ◽  
E. J. Martínez-López ◽  
N. B. Nordsborg ◽  
F. Hita-Contreras ◽  
R. Martínez-Romero ◽  
...  

2011 ◽  
Vol 110 (3) ◽  
pp. 846-853 ◽  
Author(s):  
James A. Timmons

When human skeletal muscle is exposed to exercise training, the outcomes, in terms of physiological adaptation, are unpredictable. The significance of this fact has long been underappreciated, and only recently has progress been made in identifying some of the molecular bases for the heterogeneous response to exercise training. It is not only of great medical importance that some individuals do not substantially physiologically adapt to exercise training, but the study of the heterogeneity itself provides a powerful opportunity to dissect out the genetic and environmental factors that limit adaptation, directly in humans. In the following review I will discuss new developments linking genetic and transcript abundance variability to an individual's potential to improve their aerobic capacity or endurance performance or induce muscle hypertrophy. I will also comment on the idea that certain gene networks may be associated with muscle “adaptability” regardless the stimulus provided.


2021 ◽  
Author(s):  
Masoud Rahmati ◽  
Abdolreza Rashno

AbstractSkeletal muscle is an adaptive tissue with the ability to regenerate in response to exercise training. Cross-sectional area (CSA) quantification, as a main parameter to assess muscle regeneration capability, is highly tedious and time-consuming, necessitating an accurate and automated approach to analysis. Although several excellent programs are available to automate analysis of muscle histology, they fail to efficiently and accurately measure CSA in regenerating myofibers in response to exercise training. Here, we have developed a novel fully-automated image segmentation method based on neutrosophic set algorithms to analyse whole skeletal muscle cross sections in exercise-induced regenerating myofibers, referred as MyoView, designed to obtain accurate fiber size and distribution measurements. MyoView provides relatively efficient, accurate, and reliable measurements for detecting different myofibers and CSA quantification in response to the post-exercise regenerating process. We showed that MyoView is comparable with manual quantification. We also showed that MyoView is more accurate and efficient to measure CSA in post-exercise regenerating myofibers as compared with Open-CSAM, MuscleJ, SMASH and MyoVision. Furthermore, we demonstrated that to obtain an accurate CSA quantification of exercise-induced regenerating myofibers, whole muscle cross-section analysis is an essential part, especially for the measurement of different fiber-types. We present MyoView as a new tool for CSA quantification in skeletal muscle from any experimental condition including exercise-induced regenerating myofibers.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicolas J. Pillon ◽  
Brendan M. Gabriel ◽  
Lucile Dollet ◽  
Jonathon A. B. Smith ◽  
Laura Sardón Puig ◽  
...  

AbstractThe molecular mechanisms underlying the response to exercise and inactivity are not fully understood. We propose an innovative approach to profile the skeletal muscle transcriptome to exercise and inactivity using 66 published datasets. Data collected from human studies of aerobic and resistance exercise, including acute and chronic exercise training, were integrated using meta-analysis methods (www.metamex.eu). Here we use gene ontology and pathway analyses to reveal selective pathways activated by inactivity, aerobic versus resistance and acute versus chronic exercise training. We identify NR4A3 as one of the most exercise- and inactivity-responsive genes, and establish a role for this nuclear receptor in mediating the metabolic responses to exercise-like stimuli in vitro. The meta-analysis (MetaMEx) also highlights the differential response to exercise in individuals with metabolic impairments. MetaMEx provides the most extensive dataset of skeletal muscle transcriptional responses to different modes of exercise and an online interface to readily interrogate the database.


Sign in / Sign up

Export Citation Format

Share Document