Tissue glycogen fractions of the hypothermic rat, hamster, and turtle

1964 ◽  
Vol 207 (1) ◽  
pp. 42-46 ◽  
Author(s):  
W. S. Platner ◽  
J. L. Shields ◽  
F. A. Purdy

Hypothermia in fasted rats caused reduction of both glycogen fractions in liver and heart but did not affect skeletal muscle. Forced respiration during hypothermia prevented the reduction of residual glycogen in heart, but did not otherwise alter the tissue glycogen response to hypothermia. Bilateral adrenalectomy did not prevent the loss in hypothermia of either glycogen fraction from heart or liver. Prevention of shivering by curare during hypothermia failed to maintain control levels of liver or heart glycogen fractions. Incorporation of intraperitoneal glucose-C14 into tissue glycogen of hypothermic rats was increased in soluble and residual fractions of heart, but not in liver or muscle. It was concluded that disappearance of hepatic glycogen in hypothermia may be due to an accelerated glucose utilization by myocardium, and furthermore, that soluble glycogen is the more labile fraction. The same tissues of hamsters and turtles showed no changes in either glycogen fraction due to hypothermia.

2007 ◽  
Vol 293 (6) ◽  
pp. E1716-E1725 ◽  
Author(s):  
Sean W. Limesand ◽  
Paul J. Rozance ◽  
Danielle Smith ◽  
William W. Hay

In this study we determined body weight-specific fetal (umbilical) glucose uptake (UGU), utilization (GUR), and production rates (GPR) and insulin action in intrauterine growth-restricted (IUGR) fetal sheep. During basal conditions, UGU from the placenta was 33% lower in IUGR fetuses, but GUR was not different between IUGR and control fetuses. The difference between glucose utilization and UGU rates in the IUGR fetuses demonstrated the presence and rate of fetal GPR (41% of GUR). The mRNA concentrations of the gluconeogenic enzymes glucose-6-phophatase and PEPCK were higher in the livers of IUGR fetuses, perhaps in response to CREB activation, as phosphorylated CREB/total CREB was increased 4.2-fold. A hyperglycemic clamp resulted in similar rates of glucose uptake and utilization in IUGR and control fetuses. The nearly identical GURs in IUGR and control fetuses at both basal and high glucose concentrations occurred at mean plasma insulin concentrations in the IUGR fetuses that were ∼70% lower than controls, indicating increased insulin sensitivity. Furthermore, under basal conditions, hepatic glycogen content was similar, skeletal muscle glycogen was increased 2.2-fold, the fraction of fetal GUR that was oxidized was 32% lower, and GLUT1 and GLUT4 concentrations in liver and skeletal muscle were the same in IUGR fetuses compared with controls. These results indicate that insulin-responsive fetal tissues (liver and skeletal muscle) adapt to the hypoglycemic-hypoinsulinemic IUGR environment with mechanisms that promote glucose utilization, particularly for glucose storage, including increased insulin action, glucose production, shunting of glucose utilization to glycogen production, and maintenance of glucose transporter concentrations.


1990 ◽  
Vol 259 (4) ◽  
pp. E513-E516
Author(s):  
M. N. Goodman ◽  
R. Dietrich ◽  
P. Luu

During the fasted-refed transition, hepatic glycogen repletion from glucose can occur by the direct and indirect pathway. In the indirect pathway, glucose is first metabolized to 3-carbon intermediates that then are converted in the liver to glucose 6-phosphate via the gluconeogenic pathway before conversion to glycogen. The present study evaluated whether skeletal muscle is a major source of 3-carbon intermediates (i.e., lactate, pyruvate, and alanine) during refeeding of 1-day fasted rats. Arteriovenous differences for lactate, pyruvate, and alanine across the anesthetized rat hindlimbs were used to evaluate muscle metabolism in the fed, fasted, and refed state. In the fasted state, liver glycogen was depleted, and muscle released 3-carbon intermediates. One hour after refeeding, hepatic glycogen was 30% repleted, and blood lactate, pyruvate, and alanine increased. Despite this, the release of alanine by muscle diminished at this time and lactate was removed. At 4 h after refeeding, 3-carbon intermediates were all released by hindlimb tissue but in an amount not greater than in the fasted state. Overall, these results suggest that skeletal muscle in the rat is not a major source of 3-carbon precursors for early postprandial hepatic glycogen repletion via the indirect pathway, nor is the rise in 3-carbon intermediates in blood during refeeding caused by their increased output by muscle.


1994 ◽  
Vol 267 (6) ◽  
pp. E886-E891 ◽  
Author(s):  
Z. Spolarics ◽  
G. J. Bagby ◽  
P. H. Pekala ◽  
C. Dobrescu ◽  
N. Skrepnik ◽  
...  

The aim of the present work was to test the effect of acute in vivo alcohol administration (180–190 mg/dl plasma for 3 h) on glucose utilization by tissues under basal conditions or after a hyperinsulinemic (100–130 microU/ml) euglycemic clamp in fasted rats. In vivo glucose use by individual tissues was assessed by the tracer 2-deoxy-D-glucose technique. Alcohol administration to saline-infused rats markedly inhibited glucose use by skeletal muscles, including the soleus, white and red quadriceps, and gastrocnemius, as well as by the heart. Ethanol infusion, however, had no effect on glucose use by the diaphragm, lung, liver, skin, ileum, brain, and adipose tissue. The insulin-stimulated glucose use was also inhibited by alcohol selectively in the muscles, with no effect on other tissues tested, except a moderate inhibition in the brain. Ethanol inhibited muscle glucose use by an average of approximately 50% under both basal and insulin-stimulated conditions. However, because insulin treatment more than doubled basal glucose use by these muscles, the 50% inhibition by ethanol treatment represents a greater inhibition of absolute glucose use under insulin-stimulated rather than under basal conditions. Our data demonstrate that acute alcohol intake attenuates basal and hormone-induced glucose utilization in a tissue-specific fashion. The inhibitory effect of alcohol on skeletal muscle glucose use could contribute to the previously observed decreased glucose recycling in humans after acute alcohol intake.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3129
Author(s):  
Jyotsana Pandey ◽  
Kapil Dev ◽  
Sourav Chattopadhyay ◽  
Sleman Kadan ◽  
Tanuj Sharma ◽  
...  

Estrogenic molecules have been reported to regulate glucose homeostasis and may be beneficial for diabetes management. Here, we investigated the estrogenic effect of β-sitosterol-3-O-D-glucopyranoside (BSD), isolated from the fruits of Cupressus sempervirens and monitored its ability to regulate glucose utilization in skeletal muscle cells. BSD stimulated ERE-mediated luciferase activity in both ERα and ERβ-ERE luc expression system with greater response through ERβ in HEK-293T cells, and induced the expression of estrogen-regulated genes in estrogen responsive MCF-7 cells. In silico docking and molecular interaction studies revealed the affinity and interaction of BSD with ERβ through hydrophobic interaction and hydrogen bond pairing. Furthermore, prolonged exposure of L6-GLUT4myc myotubes to BSD raised the glucose uptake under basal conditions without affecting the insulin-stimulated glucose uptake, the effect associated with enhanced translocation of GLUT4 to the cell periphery. The BSD-mediated biological response to increase GLUT4 translocation was obliterated by PI-3-K inhibitor wortmannin, and BSD significantly increased the phosphorylation of AKT (Ser-473). Moreover, BSD-induced GLUT4 translocation was prevented in the presence of fulvestrant. Our findings reveal the estrogenic activity of BSD to stimulate glucose utilization in skeletal muscle cells via PI-3K/AKT-dependent mechanism.


1986 ◽  
Vol 240 (2) ◽  
pp. 395-401 ◽  
Author(s):  
R A Challiss ◽  
D J Hayes ◽  
G K Radda

Muscle bloodflow and the rate of glucose uptake and phosphorylation were measured in vivo in rats 7 days after unilateral femoral artery ligation and section. Bloodflow was determined by using radiolabelled microspheres. At rest, bloodflow to the gastrocnemius, plantaris and soleus muscles of the ligated limb was similar to their respective mean contralateral control values; however, bilateral sciatic nerve stimulation at 1 Hz caused a less pronounced hyperaemic response in the muscles of the ligated limb, being 59, 63 and 49% of their mean control values in the gastrocnemius, plantaris and soleus muscles respectively. The rate of glucose utilization was determined by using the 2-deoxy[3H]glucose method [Ferré, Leturque, Burnol, Penicaud & Girard (1985) Biochem. J. 228, 103-110]. At rest, the rate of glucose uptake and phosphorylation was statistically significantly increased in the gastrocnemius and soleus muscles of the ligated limb, being 126 and 140% of the mean control values respectively. Bilateral sciatic nerve stimulation at 1 Hz caused a 3-5-fold increase in the rate of glucose utilization by the ligated and contralateral control limbs; furthermore, the rate of glucose utilization was significantly increased in the muscles of the ligated limb, being 140, 129 and 207% of their mean control values respectively. For the range of bloodflow to normally perfused skeletal muscle at rest or during isometric contraction determined in the present study, a linear correlation between the rate of glucose utilization and bloodflow can be demonstrated. Applying similar methods of regression analysis to glucose utilization and bloodflow to muscles of the ligated limb reveals a similar linear correlation. However, the rate of glucose utilization at a given bloodflow is increased in muscles of the ligated limb, indicating an adaptation of skeletal muscle to hypoperfusion.


2017 ◽  
Vol 312 (4) ◽  
pp. R626-R636 ◽  
Author(s):  
Lærke Bertholdt ◽  
Anders Gudiksen ◽  
Camilla L. Schwartz ◽  
Jakob G. Knudsen ◽  
Henriette Pilegaard

The liver is essential in maintaining and regulating glucose homeostasis during prolonged exercise. IL-6 has been shown to be secreted from skeletal muscle during exercise and has been suggested to signal to the liver. Therefore, the aim of this study was to investigate the role of skeletal muscle IL-6 on hepatic glucose regulation and substrate choice during prolonged exercise. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice (age, 12–14 wk) and littermate lox/lox (Control) mice were either rested (Rest) or completed a single bout of exercise for 10, 60, or 120 min, and the liver was quickly obtained. Hepatic IL-6 mRNA was higher at 60 min of exercise, and hepatic signal transducer and activator of transcription 3 was higher at 120 min of exercise than at rest in both genotypes. Hepatic glycogen was higher in IL-6 MKO mice than control mice at rest, but decreased similarly during exercise in the two genotypes, and hepatic glucose content was lower in IL-6 MKO than control mice at 120 min of exercise. Hepatic phosphoenolpyruvate carboxykinase mRNA and protein increased in both genotypes at 120 min of exercise, whereas hepatic glucose 6 phosphatase protein remained unchanged. Furthermore, IL-6 MKO mice had higher hepatic pyruvate dehydrogenase (PDH)Ser232 and PDHSer300 phosphorylation than control mice at rest. In conclusion, hepatic gluconeogenic capacity in mice is increased during prolonged exercise independent of muscle IL-6. Furthermore, Skeletal muscle IL-6 influences hepatic substrate regulation at rest and hepatic glucose metabolism during prolonged exercise, seemingly independent of IL-6 signaling in the liver.


1988 ◽  
Vol 251 (2) ◽  
pp. 577-580 ◽  
Author(s):  
V R Preedy ◽  
P J Garlick

1. Male rats (110-140 g body wt.) were restrained by a standard laboratory technique, by wrapping in a linen towel, and subjected to a constant intravenous infusion of saline (0.15 M-NaCl) for periods of 1 or 6 h. Fractional rates of protein synthesis (ks, %/day) were estimated at the start and at the end of the infusion period, by injection of a large concentration of [3H]phenylalanine. 2. In fed and overnight-fasted rats, restraint and infusion of saline for 1 and 6 h decreased ks in skeletal muscle by 15-20% and 30-35% respectively. Plasma glucose, insulin, glucagon and corticosterone concentrations in restrained and infused rats were not characteristic of immobilization stress. 3. Restrained rats responded to nutrient administration; ks in skeletal muscle increased by 35-40% after infusion of a mixture of amino acids and glucose for 1 or 6 h, as compared with saline-infused rats. 4. Restraint and infusion for 1 or 6 h did not overtly decrease ks and kRNA (protein synthesis per unit of RNA) in hypoxaemia-sensitive tissues, such as heart and liver. Restraint and infusion in an open cage, or in a cloth of open weave, did not decrease ks in muscle after 1 h. Blood gas measurements showed that rats restrained in a linen cloth were hypercapnic and acidotic compared with rats in an open cage. 5. It was concluded that respiratory acidosis, rather than hypoxia, resulting from restraint in a linen cloth decreases muscle protein synthesis.


1957 ◽  
Vol 190 (2) ◽  
pp. 239-242
Author(s):  
B. N. Spirtos ◽  
R. G. Stuelke ◽  
N. S. Halmi

Rats fed 10 gm of a commercial diet for 4–5 weeks and fasted for 24 hours showed less rise in liver glycogen and blood sugar levels in response to the injection of epinephrine than did ad libitum-fed-fasted rats. Gastrocnemius glycogen levels were found to be higher in underfed-fasted animals and fell to the same extent as in ad libitum fed-fasted animals when epinephrine was given. Blood lactate concentrations, however, rose less markedly in the underfed-fasted group. This may have been at least partly responsible for the diminished rise in hepatic glycogen and blood sugar.


2019 ◽  
Vol 32 (4) ◽  
pp. 210-218
Author(s):  
Tetiana Halenova ◽  
Natalia Raksha ◽  
Olha Kravchenko ◽  
Tetiana Vovk ◽  
Alona Yurchenko ◽  
...  

Abstract The aim of the present study was to evaluate the hypoglycemic activity of the aqueous extract from the fruit walls of Phaseolus vulgaris pods and to examine the potential mechanism underlying the improvement of the glycemic level. In the course of the study, diabetes mellitus was induced in rats with a single intraperitoneal injection of streptozotocin (45 mg·kg−1 b.w.). Diabetic and control rats were then orally administered with a single-dose or repeated-dose (28 day) of P. vulgaris extract (200 mg·kg−1). Results show that the extract was found to possess significant hypoglycemic activity, and the study of glucose utilization by isolated rat hemidiaphragm suggests that the aqueous extract may enhance the peripheral utilization of glucose. The subsequent experiments have revealed that the P. vulgaris extract could increase glucose transporter 4 (GLUT-4) content in skeletal muscle cells of control and diabetic rats. Our data also indicate that the P. vulgaris extract did not affect the content of the insulin receptor, but significantly reduced the total tyrosine kinase activity in skeletal muscle cells of both experimental groups of rats. The present results clearly indicated that P. vulgaris extract may be beneficial for reducing hyperglycemia through its potency in regulation of glucose utilization via GLUT-4, but the current mechanism remains to be unidentified.


Sign in / Sign up

Export Citation Format

Share Document