Effects of hypoxia on in vivo glycine-C14 incorporation into pancreatic cell proteins

1965 ◽  
Vol 208 (6) ◽  
pp. 1177-1182 ◽  
Author(s):  
M. Don Turner ◽  
Anne C. Turner

The effects of graded hypoxia on glycine-C14 incorporation into subcellular components were measured in the intact mammal. Groups of three fasted male rats were injected intraperitoneally with 5 µc of glycine-2-C14 and sacrificed at 5 (or 10), 15, 20, 30, and 45 min by decapitation. In one experimental series the environmental pO2 was maintained at 35 mm Hg for 2 hr before injection and throughout the experiment. In three other experimental series, the pO2 in the sealed chamber was maintained at 58, 48, and 38 mm Hg for 45 min before injection and for the duration of the experiment. The whole pancreases were rapidly removed, cooled, homogenized, and pooled before separation of cell fractions by ultracentrifugation. The specific activities (counts/min per µg of amino acid or protein N) were obtained for plasma and supernatant fraction ("cell sap") amino acids and for the purified proteins of zymogen granule, mitochondrial, microsomal, and cell sap fractions from micro-Kjeldahl analyses and liquid-scintillation counting. No detectable changes were found in the turnover of plasma amino acids during graded hypoxia. Amino acid incorporation into the proteins of all cell fractions was depressed stepwise with increasing degrees of hypoxia.

1987 ◽  
Vol 7 (1) ◽  
pp. 294-304 ◽  
Author(s):  
D Pilgrim ◽  
E T Young

Alcohol dehydrogenase isoenzyme III (ADH III) in Saccharomyces cerevisiae, the product of the ADH3 gene, is located in the mitochondrial matrix. The ADH III protein was synthesized as a larger precursor in vitro when the gene was transcribed with the SP6 promoter and translated with a reticulocyte lysate. A precursor of the same size was detected when radioactively pulse-labeled proteins were immunoprecipitated with anti-ADH antibody. This precursor was rapidly processed to the mature form in vivo with a half-time of less than 3 min. The processing was blocked if the mitochondria were uncoupled with carbonyl cyanide m-chlorophenylhydrazone. Mutant enzymes in which only the amino-terminal 14 or 16 amino acids of the presequence were retained were correctly targeted and imported into the matrix. A mutant enzyme that was missing the amino-terminal 17 amino acids of the presequence produced an active enzyme, but the majority of the enzyme activity remained in the cytoplasmic compartment on cellular fractionation. Random amino acid changes were produced in the wild-type presequence by bisulfite mutagenesis of the ADH3 gene. The resulting ADH III protein was targeted to the mitochondria and imported into the matrix in all of the mutants tested, as judged by enzyme activity. Mutants containing amino acid changes in the carboxyl-proximal half of the ADH3 presequence were imported and processed to the mature form at a slower rate than the wild type, as judged by pulse-chase studies in vivo. The unprocessed precursor appeared to be unstable in vivo. It was concluded that only a small portion of the presequence contains the necessary information for correct targeting and import. Furthermore, the information for correct proteolytic processing of the presequence appears to be distinct from the targeting information and may involve secondary structure information in the presequence.


1972 ◽  
Vol 54 (2) ◽  
pp. 279-294 ◽  
Author(s):  
David C. Shephard ◽  
Wendy B. Levin

The ability of chloroplasts isolated from Acetabulana mediterranea to synthesize the protein amino acids has been investigated. When this chloroplast isolate was presented with 14CO2 for periods of 6–8 hr, tracer was found in essentially all amino acid species of their hydrolyzed protein Phenylalanine labeling was not detected, probably due to technical problems, and hydroxyproline labeling was not tested for The incorporation of 14CO2 into the amino acids is driven by light and, as indicated by the amount of radioactivity lost during ninhydrin decarboxylation on the chromatograms, the amino acids appear to be uniformly labeled. The amino acid labeling pattern of the isolate is similar to that found in plastids labeled with 14CO2 in vivo. The chloroplast isolate did not utilize detectable amounts of externally supplied amino acids in light or, with added adenosine triphosphate (ATP), in darkness. It is concluded that these chloroplasts are a tight cytoplasmic compartment that is independent in supplying the amino acids used for its own protein synthesis. These results are discussed in terms of the role of contaminants in the observed synthesis, the "normalcy" of Acetabularia chloroplasts, the synthetic pathways for amino acids in plastids, and the implications of these observations for cell compartmentation and chloroplast autonomy.


2000 ◽  
Vol 167 (2) ◽  
pp. 247-252 ◽  
Author(s):  
H Wang ◽  
H Wolosker ◽  
J Pevsner ◽  
SH Snyder ◽  
DJ Selkoe

Little evidence is available for the physiological function of D-amino acids in species other than bacteria. Here we demonstrate that naturally occurring freed -aspartate (D-Asp) is present in all magnocellular neurons of rat hypothalamus. The levels of this naturally occurring D-amino acid were elevated during lactation and returned to normal thereafter in the magnocellular neurosecretory system, which produces oxytocin, a hormone responsible for milk ejection during lactation. Intraperitoneal injections of D-Asp reproducibly increased oxytocin gene expression and decreased the concentration of circulating oxytocin in vivo. Similar changes were observed in the vasopressin system. These results provide evidence for the role(s) of naturally occurring free D-Asp in mammalian physiology. The findings argue against the conventional concept that only L-stereoisomers of amino acids are functional in higher species.


1973 ◽  
Vol 51 (12) ◽  
pp. 933-941 ◽  
Author(s):  
Njanoor Narayanan ◽  
Jacob Eapen

The effect of cycloheximide in vitro and in vivo on the incorporation of labelled amino acids into protein by muscles, liver, kidneys, and brain of rats and pigeons was studied. In vitro incorporation of amino acids into protein by muscle microsomes, myofibrils, and myofibrillar ribosomes was not affected by cycloheximide. In contrast, administration of the antibiotic into intact animals at a concentration of 1 mg/kg body weight resulted in considerable inhibition of amino acid incorporation into protein by muscles, liver, kidneys, and brain. This inhibition was observed in all the subcellular fractions of these tissues during a period of 10–40 min after the administration of the precursor. Tissue homogenates derived from in vivo cycloheximide-treated animals did not show significant alteration in in vitro amino acid incorporation with the exception of brain, which showed a small but significant enhancement.


2021 ◽  
Author(s):  
Jun Wu ◽  
Qi-Juan Yuan ◽  
Li Wang ◽  
Jun Huang ◽  
Wei Zhao

Amino acid-based poly(ester amide) (PEA) has been utilized for various biomedical applications for its tunable mechanical property, good biocompatibility, and biodegradability. However, bioactive components have rarely been incorporated into the...


1994 ◽  
Vol 189 (1) ◽  
pp. 55-67
Author(s):  
R Parthasarathy ◽  
W R Harvey

The time-dependent fluorescence intensity of an intravesicular potential-sensitive dye was used to probe the real-time kinetics of potential difference (PD)-dependent amino acid/Na+ symport at pH9 into brush-border membrane vesicles obtained from larval Manduca sexta midgut. Neutral amino acids (alanine, proline) are symported at higher rates as the vesicles are hyperpolarized. The symport rates of acidic (glutamate) and basic (arginine) amino acids are almost PD-independent. The half-saturation constant of alanine is PD-independent between -108 and -78 mV, although the maximal symport velocity increases by half as the voltage is increased. Amino acid throughput is evidently enhanced as the relatively high transmembrane PDs (> 150 mV, lumen positive) measured in vivo are approached. The half-saturation concentrations of Na+ were in the range 15-40 mmol l-1 for most of the amino acids examined and increased with voltage for alanine. The Vmax observed as a function of cation or amino acid concentration increased as the vesicle was hyperpolarized in the case of leucine and alanine. The data support the hypothesis that carrier and substrates are at equilibrium inasmuch as substrate translocation seems to be the rate-determining step of symport.


1997 ◽  
Vol 17 (1) ◽  
pp. 115-122 ◽  
Author(s):  
M B Sainz ◽  
S A Goff ◽  
V L Chandler

C1 is a transcriptional activator of genes encoding biosynthetic enzymes of the maize anthocyanin pigment pathway. C1 has an amino terminus homologous to Myb DNA-binding domains and an acidic carboxyl terminus that is a transcriptional activation domain in maize and yeast cells. To identify amino acids critical for transcriptional activation, an extensive random mutagenesis of the C1 carboxyl terminus was done. The C1 activation domain is remarkably tolerant of amino acid substitutions, as changes at 34 residues had little or no effect on transcriptional activity. These changes include introduction of helix-incompatible amino acids throughout the C1 activation domain and alteration of most single acidic amino acids, suggesting that a previously postulated amphipathic alpha-helix is not required for activation. Substitutions at two positions revealed amino acids important for transcriptional activation. Replacement of leucine 253 with a proline or glutamine resulted in approximately 10% of wild-type transcriptional activation. Leucine 253 is in a region of C1 in which several hydrophobic residues align with residues important for transcriptional activation by the herpes simplex virus VP16 protein. However, changes at all other hydrophobic residues in C1 indicate that none are critical for C1 transcriptional activation. The other important amino acid in C1 is aspartate 262, as a change to valine resulted in only 24% of wild-type transcriptional activation. Comparison of our C1 results with those from VP16 reveal substantial differences in which amino acids are required for transcriptional activation in vivo by these two acidic activation domains.


2021 ◽  
Author(s):  
Babu Sudhamalla ◽  
Anirban Roy ◽  
Soumen Barman ◽  
Jyotirmayee Padhan

The site-specific installation of light-activable crosslinker unnatural amino acids offers a powerful approach to trap transient protein-protein interactions both in vitro and in vivo. Herein, we engineer a bromodomain to...


2002 ◽  
Vol 205 (1) ◽  
pp. 151-158 ◽  
Author(s):  
Chris N. Glover ◽  
Christer Hogstrand

SUMMARY The composition of the intestinal lumen is likely to have considerable influence upon the absorption, and consequently the nutrition and/or toxicity, of ingested zinc in aquatic environments, where zinc is both a nutrient and a toxicant of importance. The effects of amino acids upon intestinal zinc uptake in freshwater rainbow trout (Oncorhynchus mykiss) were studied using an in vivo perfusion technique. The presence of histidine, cysteine and taurine had distinct modifying actions upon quantitative and qualitative zinc absorption, compared to perfusion of zinc alone. Alterations in zinc transport were not correlated with changes in levels of free zinc ion. The chemical nature of the zinc–amino acid chelate, rather than the chelation itself, appeared to have the most important influence upon zinc absorption. l-histidine, despite a strong zinc-chelating effect, maintained quantitative zinc uptake at control (zinc alone) levels. This effect correlated with the formation of Zn(His)2 species. d-histidine at a luminal concentration of 100 mmol l–1 significantly enhanced subepithelial zinc accumulation, but reduced the fraction of zinc that was retained and absorbed by the fish. The possibility of a Zn(His)2-mediated pathway for intestinal uptake is discussed. l-cysteine specifically stimulated the accumulation of zinc post-intestinally, an effect attributed to enhanced zinc accumulation in the blood. Taurine increased subepithelial zinc accumulation, but decreased the passage of zinc to post-intestinal compartments. Amino acids are proposed to have important roles in modifying intestinal zinc uptake with potential implications for environmental toxicity as well as aquaculture.


1988 ◽  
Vol 255 (3) ◽  
pp. F397-F407 ◽  
Author(s):  
W. H. Dantzler ◽  
S. Silbernagl

Amino acid transport by juxtamedullary (JM) nephrons and its relationship to transport by superficial cortical (SC) nephrons and to function of vasa recta and collecting ducts were examined in vivo and in situ by free-flow micropuncture of Henle's loops, collecting ducts, and vasa recta and by continuous microinfusion of Henle's loops in exposed rat papillae. Fractional deliveries (FDs) of six neutral amino acids, two acidic amino acids, and taurine to tips of Henle's loops of JM nephrons could be substantially below those to early distal loops of SC nephrons, indicating that reabsorption before loop tips could be greater in JM than in SC nephrons. FDs to collecting ducts lower than to JM loop tips suggested reabsorption distal to loop tips. This was confirmed by continuous microinfusion of ascending limbs of Henle's loops. Distal site of reabsorption is unknown, but amino acids may move passively out of the thin ascending limb and be recycled into vasa recta and descending limb. Recycling of amino acids was supported by high FDs to tips of Henle's loops (sometimes greater than 1.0), higher concentrations in ascending than in descending vasa recta at same papilla level, and high mean concentrations in vasa recta.


Sign in / Sign up

Export Citation Format

Share Document