Glycogen and CO2 production from glucose and lactate by red and white skeletal muscle

1965 ◽  
Vol 209 (5) ◽  
pp. 905-909 ◽  
Author(s):  
Uwe Bar ◽  
M. C. Blanchaer

Diaphragm and external oblique muscle of the abdomen were identified histochemically as red and white muscles, respectively, in the rat. Administration of glucose orally to fasted rats 3 hr before sacrifice increased the glycogen in the red but not in the white muscle. Paired red and white muscles were incubated 2 hr in oxygen at 29 C in Krebs-Ringer phosphate medium at pH 74 containing 11 mm glucose and 40 mm dl-lactate. Glycogen increased in all the samples except in the red muscle specimens with high initial glycogen levels. The glycogen change and glucose-U-C14 incorporation into glycogen were both inversely related to the initial glycogen and were both greater in red than in white muscle. These differences between the muscles were suppressed by increasing the oral glucose dose. C14O2 production from glucose-U-C14 and lactate-1-C14 was greater in red than in white muscle.

1972 ◽  
Vol 57 (2) ◽  
pp. 551-567
Author(s):  
T. YAMAMOTO

1. Electrical and mechanical properties of the red muscle (M. levator pinnae pectoralis) and white muscle (M. levator pinnae lateralis abdominis) in the silver carp (Carassius auratus Linné) were investigated by using caffeine and thymol. 2. A complete tetanus could be produced in the red muscle. But in the white muscle no tetanus was produced and there was a gradual decrease in tension during continuous stimulation, even at a frequency of 1 c/s or less. 3. Caffeine (0.5-1 mM) and thymol (0.25-0.5 mM) potentiated the twitch tension in both muscles without an increase in the resting tension; they produced a contracture in both muscles when the concentration was increased further. 4. The falling phase of the active state of contraction was nearly the same in both muscles and was prolonged by caffeine (0.5 mmM) and by thymol (0.25 mM). 5. The resting membrane potential of the red muscle was scarcely affected by caffeine (0.5-5 mM), whereas in the white muscles a depolarization of 10 mV was observed with caffeine of more than 2 mM. The resting potential of both muscles was little changed by o.25 mm thymol. However, at a concentration of more than 0.5mM thymol depolarized the membrane in both muscles to the same extent. 6. In caffeine (2-3 mM) solution the mean specific membrane resistance was reduced from 8.8 kΩ cm2 to 6.0 kΩ cm2 in the red muscle, and from 5.0 kΩ cm2 to 2.7 kΩ cm2 in the white muscle. In thymol (0.5-1 mM) solution it was reduced from 11.2 kΩcm2 to 6.5 kΩ cm2 in the red muscle, and from 5.4kΩ cm2 to 3.1 kΩ) cm2 in the white muscle. The specific membrane capacitance, calculated from the time constant and the membrane resistance, remained more or less the same in both muscles after a treatment with these agents. 7. Electrical properties of the muscles and the effects of caffeine and thymol on mechanical responses suggest that there are no fundamental differences between red and white muscles except for the excitation-contraction coupling. A lack of summation of twitch, a successive decline of twitch, and inability to produce potassium contracture in the white muscle may be due to the fact that the Ca-releasing mechanism is easily inactivated by depolarization of the membrane.


2011 ◽  
Vol 300 (4) ◽  
pp. R835-R843 ◽  
Author(s):  
Donato A. Rivas ◽  
Sarah J. Lessard ◽  
Misato Saito ◽  
Anna M. Friedhuber ◽  
Lauren G. Koch ◽  
...  

Chronic metabolic diseases develop from the complex interaction of environmental and genetic factors, although the extent to which each contributes to these disorders is unknown. Here, we test the hypothesis that artificial selection for low intrinsic aerobic running capacity is associated with reduced skeletal muscle metabolism and impaired metabolic health. Rat models for low- (LCR) and high- (HCR) intrinsic running capacity were derived from genetically heterogeneous N:NIH stock for 20 generations. Artificial selection produced a 530% difference in running capacity between LCR/HCR, which was associated with significant functional differences in glucose and lipid handling by skeletal muscle, as assessed by hindlimb perfusion. LCR had reduced rates of skeletal muscle glucose uptake (∼30%; P = 0.04), glucose oxidation (∼50%; P = 0.04), and lipid oxidation (∼40%; P = 0.02). Artificial selection for low aerobic capacity was also linked with reduced molecular signaling, decreased muscle glycogen, and triglyceride storage, and a lower mitochondrial content in skeletal muscle, with the most profound changes to these parameters evident in white rather than red muscle. We show that a low intrinsic aerobic running capacity confers reduced insulin sensitivity in skeletal muscle and is associated with impaired markers of metabolic health compared with high intrinsic running capacity. Furthermore, selection for high running capacity, in the absence of exercise training, endows increased skeletal muscle insulin sensitivity and oxidative capacity in specifically white muscle rather than red muscle. These data provide evidence that differences in white muscle may have a role in the divergent aerobic capacity observed in this generation of LCR/HCR.


1993 ◽  
Vol 181 (1) ◽  
pp. 213-232 ◽  
Author(s):  
T. H. Yang ◽  
G. N. Somero

The effects of feeding and fasting were examined on the deep-living short-spine thornyhead (Sebastolobus alascanus) and the confamilial shallow-living spotted scorpionfish (Scorpaena guttata) to determine whether the low metabolic rate of the deeper-living species was in part a consequence of food deprivation in its habitat. Laboratory acclimation for periods of 90–115 days under either ad libitum feeding or complete fasting did not lead to similar rates of respiration in individuals of the two species held under identical conditions. Respiration of fish fed ad libitum was 52 % (S. guttata) or 68 % (S. alascanus) higher than for fasted fish of the same species. Furthermore, the metabolic rates of freshly collected specimens of S. alascanus resembled those of laboratory-fasted fish. In white skeletal muscle, both total protein concentration and the activities of four enzymes of ATP metabolism, lactate dehydrogenase (LDH) and pyruvate kinase (PK) of glycolysis, malate dehydrogenase (MDH) and citrate synthase (CS, a citric acid cycle indicator), were lower in S. alascanus than in S. guttata. Within a species, protein concentration and activities of the four enzymes in white muscle, but not in brain, were higher in fed than in starved fish, although these differences were greater in S. alascanus than in S. guttata. During fasting, LDH and PK activity in white muscle of S. alascanus decreased much more than MDH and CS activity; decreases in enzyme activities in red muscle were smaller than those in white muscle. Activities of enzymes in white skeletal muscle of field-collected S. alascanus generally resembled those of the fasted specimens. In contrast, red muscle of field- collected S. alascanus, compared with that of either fed or starved laboratory-held specimens, had a highly glycolytic poise (high LDH and PK activities relative to MDH and CS activities), which may suggest that muscle enzyme activities in the field-collected fish reflect adaptation to the low oxygen level in its adult habitat, the oxygen minimum layer. The strong correlations found between tissue biochemical properties and respiration rate allow us to develop a predictive index for metabolic rate from simple biochemical analyses, e.g. white muscle protein content or CS activity. We conclude that the low metabolic rate of S. alascanus is due to at least four depth-related factors: reduced abundance of food, low temperature, low ambient oxygen concentration and darkness, which may select for reduced locomotory activity.


1981 ◽  
Vol 59 (10) ◽  
pp. 1909-1915 ◽  
Author(s):  
V. Krishna Murthy ◽  
P. Reddanna ◽  
M. Bhaskar ◽  
S. Govindappa

Freshwater fish, Tilapia mossambica (Peters), were subjected to acute exposure and acclimation to sublethal acid water (pH 4.0), and the muscle metabolism was investigated. Differential patterns of carbohydrate metabolism were witnessed in the red and white muscles in response to both acute exposure and acclimation. The glycogen content of red muscle was elevated whereas that of white muscle was depleted on acute exposure. But on acclimation, both the muscles had elevated glycogen content. The red muscle seems to mobilize carbohydrates into both hexose mono- and di-phosphate pathways, but white muscle does so only into the hexose monophosphate pathway on acclimation. In general, both the muscles exhibited suppressed glycolysis and elevated oxidative phase leading to elevated glycogen level. The muscle metabolism was oriented towards conservation of carbohydrates and lesser production of organic acids on acclimation, as a possible metabolic adaptive mechanism of the fish, enabling them to counteract the imposed acid stress.


2004 ◽  
Vol 96 (2) ◽  
pp. 621-627 ◽  
Author(s):  
Chia-Hua Kuo ◽  
Hyonson Hwang ◽  
Man-Cheong Lee ◽  
Arthur L. Castle ◽  
John L. Ivy

The purpose of this study was to investigate the role of insulin on skeletal muscle GLUT-4 protein expression and glycogen storage after postexercise carbohydrate supplementation. Male Sprague-Dawley rats were randomly assigned to one of six treatment groups: sedentary control (Con), Con with streptozocin (Stz/C), immediately postexercise (Ex0), Ex0 with Stz (Stz/Ex0), 5-h postexercise (Ex5), and Ex5 with Stz (Stz/Ex5). Rats were exercised by swimming (2 bouts of 3 h) and carbohydrate supplemented immediately after each exercise session by glucose intubation (1 ml of a 50% wt/vol). Stz was administered 72-h before exercise, which resulted in hyperglycemia and elimination of the insulin response to the carbohydrate supplement. GLUT-4 protein of Ex0 rats was 30% above Con in fast-twitch (FT) red and 21% above Con in FT white muscle. In Ex5, GLUT-4 protein was 52% above Con in FT red and 47% above Con in FT white muscle. Muscle glycogen in FT red and white muscle was also increased above Con in Ex5 rats. Neither GLUT-4 protein nor muscle glycogen was increased above Con in Stz/Ex0 or Stz/Ex5 rats. GLUT-4 mRNA in FT red muscle of Ex0 rats was 61% above Con but only 33% above Con in Ex5 rats. GLUT-4 mRNA in FT red muscle of Stz/C and Stz/Ex0 rats was similar but significantly elevated in Ex5/Stz rats. These results suggest that insulin is essential for the increase in GLUT-4 protein expression following postexercise carbohydrate supplementation.


1979 ◽  
Vol 90 (1) ◽  
pp. 81-89 ◽  
Author(s):  
J. W. Janssen ◽  
C. van Hardeveld ◽  
A. A. H. Kassenaar

ABSTRACT T3 and T4 concentrations were determined in plasma and red and white skeletal muscle of the rat. Because of the small tissue samples (± 300 mg), the ultra-sensitive Wick radioimmunoassay (RIA) for serum was adapted for determination in ethanol extracts. The dilution curves of the plasma and tissue extracts showed excellent parallelism with the standard curves for both T3 and T4. The mean T4 level found in female rats (n = 6) was 22.6 ± 5.2 ng/ml in plasma and did not differ significantly between red (1.85 ± 0.28 ng/g) and white (1.90 ± 0.25 ng/g) skeletal muscle. The mean T3 level in 11 normal female rats was 0.629 ± 0.098 ng/ml in the plasma and was significantly higher in the red muscle (2.07 ± 0.26 ng/g) than in the white muscle (1.65 ± 0.20 ng/g). The higher T3 levels found in the red muscle as compared with the white muscle may help to elucidate the different responsiveness of these muscle types observed in altered thyroid states.


1966 ◽  
Vol 14 (7) ◽  
pp. 549-559 ◽  
Author(s):  
ROSE MARY BOCEK ◽  
CLARISSA H. BEATTY

Homogenates of red and white muscles from rats and monkeys were assayed for total phosphorylase and phosphorylase a and for the total and independent forms of glycogen synthetase. Total and phosphorylase a activities were higher in the supernatant fraction of homogenates of white as compared with red muscle from both rats and monkeys. Both forms of phosphorylase were higher in white muscle from rats when assayed on whole homogenates. The total and d form of glycogen synthetase activities were higher in red muscle from both species of animals. The ratio of I/total synthetase was 2- to 3-fold higher in muscle from monkeys as compared with that from rats. These results support histochemical evidence that phosphorylase is higher in white muscle fibers and glycogen synthetase is higher in red muscle fibers.


2009 ◽  
Vol 297 (4) ◽  
pp. R1202-R1212 ◽  
Author(s):  
Arend Bonen ◽  
Graham P. Holloway ◽  
Narendra N. Tandon ◽  
Xiao-Xia Han ◽  
Jay McFarlan ◽  
...  

We examined fatty acid transporters, transport, and metabolism in hearts and red and white muscles of lean and insulin-resistant ( week 6) and type 2 diabetic ( week 24) Zucker diabetic fatty (ZDF) rats. Cardiac fatty acid transport was similar in lean and ZDF hearts at week 6 but was reduced at week 24 (−40%) in lean but not ZDF hearts. Red muscle of ZDF rats exhibited an early susceptibility to upregulation (+66%) of fatty acid transport at week 6 that was increased by 50% in lean and ZDF rats at week 24 but remained 44% greater in red muscle of ZDF rats. In white muscle, no differences were observed in fatty acid transport between groups or from week 6 to week 24. In all tissues (heart and red and white muscle), FAT/CD36 protein and plasmalemmal content paralleled the changes in fatty acid transport. Triacylglycerol content in red and white muscles, but not heart, in lean and ZDF rats correlated with fatty acid transport ( r = 0.91) and sarcolemmal FAT/CD36 ( r = 0.98). Red and white muscle fatty acid oxidation by isolated mitochondria was not impaired in ZDF rats but was reduced by 18–24% in red muscle of lean rats at week 24. Thus, in red, but not white, muscle of insulin-resistant and type 2 diabetic animals, a marked upregulation in fatty acid transport and intramuscular triacylglycerol was associated with increased levels of FAT/CD36 expression and plasmalemmal content. In heart, greater rates of fatty acid transport and FAT/CD36 in ZDF rats ( week 24) were attributable to the inhibition of age-related reductions in these parameters. However, intramuscular triacylglycerol did not accumulate in hearts of ZDF rats. Thus insulin resistance and type 2 diabetes are accompanied by tissue-specific differences in FAT/CD36 and fatty acid transport and metabolism. Upregulation of fatty acid transport increased red muscle, but not cardiac, triacylglycerol accumulation. White muscle lipid metabolism dysregulation was not observed.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Ming-Ping Wu ◽  
Nen-Chung Chang ◽  
Chi-Li Chung ◽  
Wan-Chun Chiu ◽  
Cheng-Chen Hsu ◽  
...  

Several studies have compared molecular components between red and white skeletal muscles in mammals. However, mammalian skeletal muscles are composed of mixed types of muscle fibers. In the current study, we analyzed and compared the distributions of titin, lipid, phosphate ions, and fatty acid levels in red and white muscles using a fish model (Tilapia), which is rich in red and white muscles, and these are well separated. Oil-red O staining showed that red muscle had more-abundant lipids than did white muscle. A time-of-flight secondary-ion mass spectrometric (TOF-SIMS) analysis revealed that red muscle possessed high levels of palmitic acid and oleic acid, but white muscle contained more phosphate ions. Moreover, elastica-van Gieson (EVG) and Mito-Tracker green FM staining showed that collagen and elastic fibers were highly, respectively, distributed in connective tissues and mitochondria in red muscle. An electron micrographic analysis indicated that red muscle had a relatively higher number of mitochondria and longer sarcomere lengths and Z-line widths, while myofibril diameters were thicker in white muscle. Myofibrillar proteins separated by SDS-PAGE showed that the major giant protein, titin, was highly expressed in white muscle than in red muscle. Furthermore, ratios of titin to myosin heavy chain (MHC) (titin/MHC) were about 1.3 times higher in white muscle than red muscle. We postulated that white muscle is fit for short and strong contractile performance due to high levels of titin and condensed sarcomeres, whereas red muscle is fit for low intensity and long-lasting activity due to high levels of lipids and mitochondria and long sarcomeres.


2002 ◽  
Vol 283 (1) ◽  
pp. E44-E49 ◽  
Author(s):  
Encarnación Capilla ◽  
Mònica Dı́az ◽  
Joaquim Gutiérrez ◽  
Josep V. Planas

We have recently cloned a glucose transporter from brown trout muscle (btGLUT) with high sequence homology to mammalian GLUT4 that is predominantly expressed in red and white skeletal muscle, the two major sites of glucose uptake in trout. To study the physiological regulation of this putative fish GLUT4, we have investigated the expression of btGLUT in red and white skeletal muscle of trout in which blood insulin levels have been altered experimentally. The expression of btGLUT in red muscle increased significantly when insulin plasma levels were elevated by either insulin or arginine treatment and decreased significantly when insulin plasma levels were reduced either by fasting or by feeding a low-protein, high-carbohydrate diet. In contrast, the expression of btGLUT in white muscle was not affected by changes in the plasma levels of insulin. These results strongly suggest that insulin could be regulating the expression of btGLUT in trout red muscle in vivo and set the ground to test the hypothesis that btGLUT may be considered a GLUT4 homolog in fish.


Sign in / Sign up

Export Citation Format

Share Document