scholarly journals Role of insulin on exercise-induced GLUT-4 protein expression and glycogen supercompensation in rat skeletal muscle

2004 ◽  
Vol 96 (2) ◽  
pp. 621-627 ◽  
Author(s):  
Chia-Hua Kuo ◽  
Hyonson Hwang ◽  
Man-Cheong Lee ◽  
Arthur L. Castle ◽  
John L. Ivy

The purpose of this study was to investigate the role of insulin on skeletal muscle GLUT-4 protein expression and glycogen storage after postexercise carbohydrate supplementation. Male Sprague-Dawley rats were randomly assigned to one of six treatment groups: sedentary control (Con), Con with streptozocin (Stz/C), immediately postexercise (Ex0), Ex0 with Stz (Stz/Ex0), 5-h postexercise (Ex5), and Ex5 with Stz (Stz/Ex5). Rats were exercised by swimming (2 bouts of 3 h) and carbohydrate supplemented immediately after each exercise session by glucose intubation (1 ml of a 50% wt/vol). Stz was administered 72-h before exercise, which resulted in hyperglycemia and elimination of the insulin response to the carbohydrate supplement. GLUT-4 protein of Ex0 rats was 30% above Con in fast-twitch (FT) red and 21% above Con in FT white muscle. In Ex5, GLUT-4 protein was 52% above Con in FT red and 47% above Con in FT white muscle. Muscle glycogen in FT red and white muscle was also increased above Con in Ex5 rats. Neither GLUT-4 protein nor muscle glycogen was increased above Con in Stz/Ex0 or Stz/Ex5 rats. GLUT-4 mRNA in FT red muscle of Ex0 rats was 61% above Con but only 33% above Con in Ex5 rats. GLUT-4 mRNA in FT red muscle of Stz/C and Stz/Ex0 rats was similar but significantly elevated in Ex5/Stz rats. These results suggest that insulin is essential for the increase in GLUT-4 protein expression following postexercise carbohydrate supplementation.

1999 ◽  
Vol 87 (6) ◽  
pp. 2290-2295 ◽  
Author(s):  
Chia-Hua Kuo ◽  
Desmond G. Hunt ◽  
Zhenping Ding ◽  
John L. Ivy

The effect of carbohydrate supplementation on skeletal muscle glucose transporter GLUT-4 protein expression was studied in fast-twitch red and white gastrocnemius muscle of Sprague-Dawley rats before and after glycogen depletion by swimming. Exercise significantly reduced fast-twitch red muscle glycogen by 50%. During a 16-h exercise recovery period, muscle glycogen returned to control levels (25.0 ± 1.4 μmol/g) in exercise-fasted rats (24.2 ± 0.3 μmol/g). However, when carbohydrate supplementation was provided during and immediately postexercise by intubation, muscle glycogen increased 77% above control (44.4 ± 2.1 μmol/g). Exercise-fasting resulted in an 80% increase in fast-twitch red muscle GLUT-4 mRNA but only a 43% increase in GLUT-4 protein concentration. Conversely, exercise plus carbohydrate supplementation elevated fast-twitch red muscle GLUT-4 protein concentration by 88% above control, whereas GLUT-4 mRNA was increased by only 40%. Neither a 16-h fast nor carbohydrate supplementation had an effect on fast-twitch red muscle GLUT-4 protein concentration or on GLUT-4 mRNA in sedentary rats, although carbohydrate supplementation increased muscle glycogen concentration by 40% (35.0 ± 0.9 μmol/g). GLUT-4 protein in fast-twitch white muscle followed a pattern similar to fast-twitch red muscle. These results indicate that carbohydrate supplementation, provided with exercise, will enhance GLUT-4 protein expression by increasing translational efficiency. Conversely, postexercise fasting appears to upregulate GLUT-4 mRNA, possibly to amplify GLUT-4 protein expression on an increase in glucose availability. These regulatory mechanisms may help control muscle glucose uptake in accordance with glucose availability and protect against postexercise hypoglycemia.


1992 ◽  
Vol 282 (3) ◽  
pp. 765-772 ◽  
Author(s):  
M Camps ◽  
A Castelló ◽  
P Muñoz ◽  
M Monfar ◽  
X Testar ◽  
...  

1. GLUT-4 glucose-transporter protein and mRNA levels were assessed in heart, red muscle and white muscle, as well as in brown and white adipose tissue from 7-day streptozotocin-induced diabetic and 48 h-fasted rats. 2. In agreement with previous data, white adipose tissue showed a substantial decrease in GLUT-4 mRNA and protein levels in response to both diabetes and fasting. Similarly, GLUT-4 mRNA and protein markedly decreased in brown adipose tissue in both insulinopenic conditions. 3. Under control conditions, the level of expression of GLUT-4 protein content differed substantially in heart, red and white skeletal muscle. Thus GLUT-4 protein was maximal in heart, and red muscle had a greater GLUT-4 content compared with white muscle. In spite of the large differences in GLUT-4 protein content, GLUT-4 mRNA levels were equivalent in heart and red skeletal muscle. 4. In heart, GLUT-4 mRNA decreased to a greater extent than GLUT-4 protein in response to diabetes and fasting. In contrast, red muscle showed a greater decrease in GLUT-4 protein than in mRNA in response to diabetes or fasting, and in fact no decrease in GLUT-4 mRNA content was detectable in fasting. On the other hand, preparations of white skeletal muscle showed a substantial increase in GLUT-4 mRNA under both insulinopenic conditions, and that was concomitant to either a modest decrease in GLUT-4 protein in diabetes or to no change in fasting. 5. These results indicate that (a) the effects of diabetes and fasting are almost identical and lead to changes in GLUT-4 expression that are tissue-specific, (b) white adipose tissue, brown adipose tissue and heart respond similarly to insulin deficiency by decreasing GLUT-4 mRNA to a larger extent than GLUT-4 protein, and (c) red and white skeletal muscle respond to insulinopenic conditions in a heterogeneous manner which is characterized by enhanced GLUT-4 mRNA/protein ratios.


1994 ◽  
Vol 189 (1) ◽  
pp. 69-84 ◽  
Author(s):  
T West ◽  
P Schulte ◽  
P Hochachka

Rates of whole-body glucose turnover and muscle-specific glucose utilization were determined in rainbow trout (Oncorhynchus mykiss) at rest and at intervals during recovery from burst swimming. Plasma glucose level was high in the experimental animals (range 6­38 mmol l-1), but hyperglycemia was not related specifically to exercise. Estimated glucose turnover, 19.3±2.6 (rest) and 15.8±3.9 µmol min-1 kg-1 (recovery), was also highly variable, but was linearly associated with plasma glucose concentration (turnover=0.97[glucose]+0.57, r=0.93) in both resting and recovering fish. While utilization of glucose in the whole animal was clearly responsive to plasma glucose availability, estimated total skeletal muscle disposal of glucose accounted for less than 15 % of glucose turnover, indicating that glucose was utilized largely by tissues other than locomotory muscle. Rates of glucose utilization in white muscle (range 0.5­4 nmol min-1 g-1) provide direct evidence that glucose, regardless of plasma concentration, accounted for less than 10 % of glycogen repletion during exercise recovery. In red muscle, glucose uptake was influenced by plasma glucose level below 10­12 mmol l-1 (utilization range 1­15 nmol min-1 g-1), but was independent of glucose concentration above about 12 mmol l-1 (utilization plateaued at 15­20 nmol min-1 g-1). Trout red muscle is similar to mammalian white muscle in the sense that glucose is estimated to account incompletely for glycogen restoration (25­60 %), suggesting dependence on both glycogenesis and glyconeogenesis during recovery. It is concluded that hyperglycemia may be important to the pattern of substrate incorporation into red muscle glycogen and to the rate of repletion observed, but glucose availability has, as predicted from earlier indirect studies, little relevance to white muscle glycogen restoration. The regulatory mechanisms that govern apparently very high glucose turnover rates during extreme hyperglycemia, concomitant with low disposal rates in skeletal muscle, require further investigation.


1990 ◽  
Vol 259 (6) ◽  
pp. E778-E786 ◽  
Author(s):  
T. Ploug ◽  
B. M. Stallknecht ◽  
O. Pedersen ◽  
B. B. Kahn ◽  
T. Ohkuwa ◽  
...  

The effect of 10 wk endurance swim training on 3-O-methylglucose (3-MG) uptake (at 40 mM 3-MG) in skeletal muscle was studied in the perfused rat hindquarter. Training resulted in an increase of approximately 33% for maximum insulin-stimulated 3-MG transport in fast-twitch red fibers and an increase of approximately 33% for contraction-stimulated transport in slow-twitch red fibers compared with nonexercised sedentary muscle. A fully additive effect of insulin and contractions was observed both in trained and untrained muscle. Compared with transport in control rats subjected to an almost exhaustive single exercise session the day before experiment both maximum insulin- and contraction-stimulated transport rates were increased in all muscle types in trained rats. Accordingly, the increased glucose transport capacity in trained muscle was not due to a residual effect of the last training session. Half-times for reversal of contraction-induced glucose transport were similar in trained and untrained muscles. The concentrations of mRNA for GLUT-1 (the erythrocyte-brain-Hep G2 glucose transporter) and GLUT-4 (the adipocyte-muscle glucose transporter) were increased approximately twofold by training in fast-twitch red muscle fibers. In parallel to this, Western blot demonstrated a approximately 47% increase in GLUT-1 protein and a approximately 31% increase in GLUT-4 protein. This indicates that the increases in maximum velocity for 3-MG transport in trained muscle is due to an increased number of glucose transporters.


2011 ◽  
Vol 300 (4) ◽  
pp. R835-R843 ◽  
Author(s):  
Donato A. Rivas ◽  
Sarah J. Lessard ◽  
Misato Saito ◽  
Anna M. Friedhuber ◽  
Lauren G. Koch ◽  
...  

Chronic metabolic diseases develop from the complex interaction of environmental and genetic factors, although the extent to which each contributes to these disorders is unknown. Here, we test the hypothesis that artificial selection for low intrinsic aerobic running capacity is associated with reduced skeletal muscle metabolism and impaired metabolic health. Rat models for low- (LCR) and high- (HCR) intrinsic running capacity were derived from genetically heterogeneous N:NIH stock for 20 generations. Artificial selection produced a 530% difference in running capacity between LCR/HCR, which was associated with significant functional differences in glucose and lipid handling by skeletal muscle, as assessed by hindlimb perfusion. LCR had reduced rates of skeletal muscle glucose uptake (∼30%; P = 0.04), glucose oxidation (∼50%; P = 0.04), and lipid oxidation (∼40%; P = 0.02). Artificial selection for low aerobic capacity was also linked with reduced molecular signaling, decreased muscle glycogen, and triglyceride storage, and a lower mitochondrial content in skeletal muscle, with the most profound changes to these parameters evident in white rather than red muscle. We show that a low intrinsic aerobic running capacity confers reduced insulin sensitivity in skeletal muscle and is associated with impaired markers of metabolic health compared with high intrinsic running capacity. Furthermore, selection for high running capacity, in the absence of exercise training, endows increased skeletal muscle insulin sensitivity and oxidative capacity in specifically white muscle rather than red muscle. These data provide evidence that differences in white muscle may have a role in the divergent aerobic capacity observed in this generation of LCR/HCR.


1993 ◽  
Vol 181 (1) ◽  
pp. 213-232 ◽  
Author(s):  
T. H. Yang ◽  
G. N. Somero

The effects of feeding and fasting were examined on the deep-living short-spine thornyhead (Sebastolobus alascanus) and the confamilial shallow-living spotted scorpionfish (Scorpaena guttata) to determine whether the low metabolic rate of the deeper-living species was in part a consequence of food deprivation in its habitat. Laboratory acclimation for periods of 90–115 days under either ad libitum feeding or complete fasting did not lead to similar rates of respiration in individuals of the two species held under identical conditions. Respiration of fish fed ad libitum was 52 % (S. guttata) or 68 % (S. alascanus) higher than for fasted fish of the same species. Furthermore, the metabolic rates of freshly collected specimens of S. alascanus resembled those of laboratory-fasted fish. In white skeletal muscle, both total protein concentration and the activities of four enzymes of ATP metabolism, lactate dehydrogenase (LDH) and pyruvate kinase (PK) of glycolysis, malate dehydrogenase (MDH) and citrate synthase (CS, a citric acid cycle indicator), were lower in S. alascanus than in S. guttata. Within a species, protein concentration and activities of the four enzymes in white muscle, but not in brain, were higher in fed than in starved fish, although these differences were greater in S. alascanus than in S. guttata. During fasting, LDH and PK activity in white muscle of S. alascanus decreased much more than MDH and CS activity; decreases in enzyme activities in red muscle were smaller than those in white muscle. Activities of enzymes in white skeletal muscle of field-collected S. alascanus generally resembled those of the fasted specimens. In contrast, red muscle of field- collected S. alascanus, compared with that of either fed or starved laboratory-held specimens, had a highly glycolytic poise (high LDH and PK activities relative to MDH and CS activities), which may suggest that muscle enzyme activities in the field-collected fish reflect adaptation to the low oxygen level in its adult habitat, the oxygen minimum layer. The strong correlations found between tissue biochemical properties and respiration rate allow us to develop a predictive index for metabolic rate from simple biochemical analyses, e.g. white muscle protein content or CS activity. We conclude that the low metabolic rate of S. alascanus is due to at least four depth-related factors: reduced abundance of food, low temperature, low ambient oxygen concentration and darkness, which may select for reduced locomotory activity.


1979 ◽  
Vol 90 (1) ◽  
pp. 81-89 ◽  
Author(s):  
J. W. Janssen ◽  
C. van Hardeveld ◽  
A. A. H. Kassenaar

ABSTRACT T3 and T4 concentrations were determined in plasma and red and white skeletal muscle of the rat. Because of the small tissue samples (± 300 mg), the ultra-sensitive Wick radioimmunoassay (RIA) for serum was adapted for determination in ethanol extracts. The dilution curves of the plasma and tissue extracts showed excellent parallelism with the standard curves for both T3 and T4. The mean T4 level found in female rats (n = 6) was 22.6 ± 5.2 ng/ml in plasma and did not differ significantly between red (1.85 ± 0.28 ng/g) and white (1.90 ± 0.25 ng/g) skeletal muscle. The mean T3 level in 11 normal female rats was 0.629 ± 0.098 ng/ml in the plasma and was significantly higher in the red muscle (2.07 ± 0.26 ng/g) than in the white muscle (1.65 ± 0.20 ng/g). The higher T3 levels found in the red muscle as compared with the white muscle may help to elucidate the different responsiveness of these muscle types observed in altered thyroid states.


2015 ◽  
Vol 114 (4) ◽  
pp. 519-532 ◽  
Author(s):  
Huan Wang ◽  
Gabriel J. Wilson ◽  
Dan Zhou ◽  
Stéphane Lezmi ◽  
Xiuwen Chen ◽  
...  

The aim of the present study was to investigate the mechanistic basis of protein deficiency during pregnancy in mother that is transduced to offspring. To this end, timed-pregnant Sprague–Dawley rats were fed either a control (20 % of energy from protein) or low-protein (LP, 8 % of energy from protein) diet during gestation. Tissues were collected after delivery from rat dams, and skeletal muscle was collected at postnatal day 38 from the offspring. Quantitative RT-PCR and Western blot analyses were performed to determine mRNA and protein levels. Histological analysis was performed to evaluate myofibre size. LP dams gained significantly less weight during pregnancy, developed muscle atrophy, and had significantly lower circulating threonine and histidine levels than control dams. The mRNA expression of the well-known amino acid response (AAR) pathway-related target genes was increased only in the skeletal muscle of LP dams, as well as the protein expression levels of activating transcription factor 4 (ATF4) and phosphorylated eukaryotic translation initiation factor 2α (p-eIF2α). The mRNA expression of autophagy-related genes was significantly increased in the skeletal muscle of LP dams. Moreover, the mRNA expression of genes involved in both AAR and autophagy pathways remained elevated and was memorised in the muscle of LP offspring that consumed a post-weaning control diet. Additionally, the LP diet increased an autophagy marker, microtubule-associated proteins 1A/1B light chain 3B (LC3B) protein expression in the skeletal muscle of rat dams, consistent with the initiation of autophagy. The LP diet further increased ATF4 binding at the predicted regions of AAR and autophagy pathway-related genes. Increased binding of ATF4 unveils the crucial role of ATF4 in the activation of autophagy in response to protein restriction. Our data suggest that molecular changes in maternal muscle are memorised in the offspring long after gestational protein restriction, reinforcing the role of maternal signalling in programming offspring health.


2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Tieying Li ◽  
Ying Zhang

Objective To investigate the effects of 4 weeks aerobic exercise mediates apelin on the p-AMPK(Thr172)/AMPK ratio in skeletal muscle of mice. Methods The C57BL/6J wild type mice(n=40) were randomly divided into four groups: control group (WC), exercise group (WE), apelin injection control group (AC) and apelin injection exercise group (AE), with 10 mice in each group. Apelin injection group mice were intraperitoneally injected with apelin (0.1 μmol/kg/day) for 4 weeks. At the same time, the exercise groups mice underwent 60min/day treadmill running with a slope of  5°at the speed of 15m/min for 2 weeks, and the speed was adjusted to 20m/min in the later 2 weeks. 48 h after the final exercise session quadriceps muscles were harvest. The protein expression of apelin, APJ, AMPKα and p-AMPKα (Thr172) in skeletal muscle was determined by Western Blot. Results (1) Compared with WC group, the protein expression of apelin , APJ and p-AMPKα (Thr172)/AMPKα ratio  in AC group skeletal muscle of mice were increased; (2) Compared with WE group , the p-AMPKα (Thr172) / AMPKα ratio in AE group skeletal muscle of mice were  increased. Conclusions Apelin supplementation for 4 weeks can up-regulate AMPK protein activity in skeletal muscle both in sedentary group and exercise group.


1993 ◽  
Vol 264 (3) ◽  
pp. C727-C733 ◽  
Author(s):  
G. J. Etgen ◽  
J. T. Brozinick ◽  
H. Y. Kang ◽  
J. L. Ivy

Exercise training increases the concentration of GLUT-4 protein in skeletal muscle that is associated with an increase in maximal insulin-stimulated glucose transport. The purpose of this study was to determine whether exercise training results in a long-lasting increase in insulin-stimulated glucose transport in rat skeletal muscle. Glucose uptake and skeletal muscle 3-O-methyl-D-glucose (3-MG) transport were determined during hindlimb perfusion in the presence of a maximally stimulating concentration of insulin (10 mU/ml). Hindlimb glucose uptake was approximately 29% above sedentary (Sed) levels in rats examined within 24 h (24H) of their last exercise session. However, when rats were examined 48 h (48H) after their last exercise session, hindlimb glucose uptake was not different from Sed levels. Maximal 3-MG transport was enhanced, above Sed levels, in red (RG; 72% increase) and white (WG; 44% increase) gastrocnemius and plantaris (Plan; 67% increase) muscles, but not soleus (Sol), of 24H rats. GLUT-4 protein content was significantly elevated in those muscles that exhibited enhanced 3-MG transport in 24H rats. GLUT-4 protein content was also elevated in RG, WG, and Plan of 48H rats and was not different from 24H rats. Despite the elevated GLUT-4 protein content, 3-MG transport in 48H rats was only slightly, although statistically not significantly, higher than in Sed rats. These results provide evidence that exercise training does not result in a persistent increase in skeletal muscle glucose uptake or transport, despite an increase in GLUT-4 protein content.


Sign in / Sign up

Export Citation Format

Share Document