Hypoxia induces type II NOS gene expression in pulmonary artery endothelial cells via HIF-1

1998 ◽  
Vol 274 (2) ◽  
pp. L212-L219 ◽  
Author(s):  
Lisa A. Palmer ◽  
Gregg L. Semenza ◽  
Mark H. Stoler ◽  
Roger A. Johns

Type II nitric oxide synthase (NOS) is upregulated in the pulmonary vasculature in a chronic hypoxia model of pulmonary hypertension. In situ hybridization analysis demonstrates that type II NOS RNA is increased in the endothelium as well as in the vascular smooth muscle in the lung. The current studies examine the role of hypoxia-inducible factor (HIF)-1 in regulating type II NOS gene expression in response to hypoxia in pulmonary artery endothelial cells. Northern blot analyses demonstrate a twofold increase in HIF-1α but not in HIF-1β RNA with hypoxia in vivo and in vitro. Electrophoretic mobility shift assays show the induction of specific DNA binding activity when endothelial cells were subjected to hypoxia. This DNA binding complex was identified as HIF-1 using antibodies directed against HIF-1α and HIF-1β. Transient transfection of endothelial cells resulted in a 2.7-fold increase in type II NOS promoter activity in response to hypoxia compared with nonhypoxic controls. Mutation or deletion of the HIF-1 site eliminated the response to hypoxia. These results demonstrate that HIF-1 is essential for the hypoxic regulation of type II NOS gene transcription in pulmonary endothelium.

2007 ◽  
Vol 88 (1) ◽  
pp. 259-263 ◽  
Author(s):  
Jochen Bodem ◽  
Hans-Georg Kräusslich ◽  
Axel Rethwilm

It was shown recently that retrovirus transactivators interact with transcriptional coactivators, such as histone acetyltransferases (HATs). Foamy viruses (FVs) direct gene expression from the long terminal repeat and from an internal promoter. The activity of both promoters is strictly dependent on the DNA-binding transactivator Tas. Recently, it was shown that Tas interacts with the HATs p300 and PCAF. Based on these findings, it is demonstrated here that PCAF has the ability to acetylate Tas in vitro and in vivo. Tas acetylation resulted in enhanced DNA binding to the virus promoters. In vitro transcription reactions on non-chromatinized template showed that only acetylated Tas enhanced transcription significantly. These results demonstrate that acetylation of the FV transactivator Tas may be an effective means to regulate virus transcription.


1998 ◽  
Vol 330 (3) ◽  
pp. 1469-1474 ◽  
Author(s):  
Yaxu WU ◽  
Johannes RUEF ◽  
N. Gadiparthi RAO ◽  
Cam PATTERSON ◽  
S. Marschall RUNGE

The mitogenic effects of thrombin are mediated by a G-protein-coupled receptor. Because the effects of thrombin are strongly influenced by the expression of its receptor, an understanding of its regulatory mechanisms is essential. To identify mechanisms of human thrombin receptor (HTR) gene regulation, a series of HTR-promoter-luciferase constructs were made and transfected into human microvascular endothelial cells for analysis. Deletion from bp -303 to -164 abolished reporter gene expression. Dimethyl sulphate treatment in vivo and DNase I footprinting in vitro demonstrated that a cluster of three GC box consensus sites was occupied, and electrophoretic mobility-shift assays established that Sp1 and Sp3 both bind to this 3ʹ GC box cluster. We mutated each of the three GC boxes individually and all three collectively within this 3ʹ cluster. Basal promoter activity was decreased to 46%, 78% and 29% of control for each of the GC boxes mutated individually, and to 6% when the three were mutated collectively. To test the individual abilities of Sp1 and Sp3 to activate or repress HTR transcription, we conducted co-transfection experiments with wild-type or mutated HTR-promoter-luciferase constructs. Co-transfection with Sp1 significantly augmented wild-type HTR promoter activity. Sp3 alone did not affect activity, and inhibited Sp1-mediated activation. Competition for shared binding sites by Sp1 and Sp3 might differentially regulate HTR expression in vascular endothelial cells.


Author(s):  
Amlan Chakraborty ◽  
Venkatakrishna R. Jala ◽  
Sutirtha Chakraborty ◽  
R. Eric Berson ◽  
M. Keith Sharp ◽  
...  

Wall shear stress (WSS) plays a key role in altering intracellular pathways and gene expression of endothelial cells, and has significant impacts on atherosclerotic plaque development (1–3). Further, the atherogenic regulators Leukotriene B4 (LTB4) and Lipopolysaccharide (LPS) have significant impacts on the pathophysiology of many inflammatory diseases. This study investigates the effects of oscillatory shear directionality on pro-atherogenic gene expression (I-CAM, E-Selectin, and IL-6) in the presence of LTB4 and LPS. An orbital shaker was used to expose the endothelial cells to oscillatory shear in culture dishes, and Computational fluid dynamics (CFD) was applied to quantify the shear stress on the bottom of the orbiting dish. Directionality of oscillatory shear was characterized by a newly developed hemodynamic parameter — Directional oscillatory shear index (DOSI), which was demonstrated in a previous study to significantly impact cell morphology (4). Results showed that DOSI significantly altered gene expression. Therefore, directionality of shear modulates atherosclerotic gene expression in vitro and thus, may influence the formation of atherosclerotic plaque in vivo.


2007 ◽  
Vol 27 (8) ◽  
pp. 2919-2933 ◽  
Author(s):  
Benoit Grondin ◽  
Martin Lefrancois ◽  
Mathieu Tremblay ◽  
Marianne Saint-Denis ◽  
André Haman ◽  
...  

ABSTRACT Transcription factors can function as DNA-binding-specific activators or as coactivators. c-Jun drives gene expression via binding to AP-1 sequences or as a cofactor for PU.1 in macrophages. c-Jun heterodimers bind AP-1 sequences with higher affinity than homodimers, but how c-Jun works as a coactivator is unknown. Here, we provide in vitro and in vivo evidence that c-Jun homodimers are recruited to the interleukin-1β (IL-1β) promoter in the absence of direct DNA binding via protein-protein interactions with DNA-anchored PU.1 and CCAAT/enhancer-binding protein β (C/EBPβ). Unexpectedly, the interaction interface with PU.1 and C/EBPβ involves four of the residues within the basic domain of c-Jun that contact DNA, indicating that the capacities of c-Jun to function as a coactivator or as a DNA-bound transcription factor are mutually exclusive. Our observations indicate that the IL-1β locus is occupied by PU.1 and C/EBPβ and poised for expression and that c-Jun enhances transcription by facilitating a rate-limiting step, the assembly of the RNA polymerase II preinitiation complex, with minimal effect on the local chromatin status. We propose that the basic domain of other transcription factors may also be redirected from a DNA interaction mode to a protein-protein interaction mode and that this switch represents a novel mechanism regulating gene expression profiles.


2006 ◽  
Vol 189 (5) ◽  
pp. 1922-1930 ◽  
Author(s):  
Giordano Rampioni ◽  
Fabio Polticelli ◽  
Iris Bertani ◽  
Karima Righetti ◽  
Vittorio Venturi ◽  
...  

ABSTRACT In the opportunistic human pathogen Pseudomonas aeruginosa, quorum sensing (QS) is crucial for virulence. The RsaL protein directly represses the transcription of lasI, the synthase gene of the main QS signal molecule. On the basis of sequence homology, RsaL cannot be predicted to belong to any class of characterized DNA-binding proteins. In this study, an in silico model of the RsaL structure was inferred showing that RsaL belongs to the tetrahelical superclass of helix-turn-helix proteins. The overall structure of RsaL is very similar to the N-terminal domain of the lambda cI repressor and to the POU-specific domain of the mammalian transcription factor Oct-1 (Oct-1 POUs). Moreover, residues of Oct-1 POUs important for structural stability and/or DNA binding are conserved in the same positions in RsaL and in its homologs found in GenBank. These residues were independently replaced with Ala, and the activities of the mutated variants of RsaL were compared to that of the wild-type counterpart in vivo by complementation assays and in vitro by electrophoretic mobility shift assays. The results validated the RsaL in silico model and showed that residues Arg 20, Gln 38, Ser 42, Arg 43, and Glu 45 are important for RsaL function. Our data indicate that RsaL could be the founding member of a new protein family within the tetrahelical superclass of helix-turn-helix proteins. Finally, the minimum DNA sequence required for RsaL binding on the lasI promoter was determined, and our data support the hypothesis that RsaL binds DNA as a dimer.


1998 ◽  
Vol 18 (9) ◽  
pp. 4971-4976 ◽  
Author(s):  
Ken-ichi Takemaru ◽  
Satoshi Harashima ◽  
Hitoshi Ueda ◽  
Susumu Hirose

ABSTRACT Transcriptional coactivators play a crucial role in gene expression by communicating between regulatory factors and the basal transcription machinery. The coactivator multiprotein bridging factor 1 (MBF1) was originally identified as a bridging molecule that connects theDrosophila nuclear receptor FTZ-F1 and TATA-binding protein (TBP). The MBF1 sequence is highly conserved across species fromSaccharomyces cerevisiae to human. Here we provide evidence acquired in vitro and in vivo that yeast MBF1 mediates GCN4-dependent transcriptional activation by bridging the DNA-binding region of GCN4 and TBP. These findings indicate that the coactivator MBF1 functions by recruiting TBP to promoters where DNA-binding regulators are bound.


2005 ◽  
Vol 79 (1) ◽  
pp. 28-38 ◽  
Author(s):  
John M. Casper ◽  
Jennifer M. Timpe ◽  
John David Dignam ◽  
James P. Trempe

ABSTRACT Adeno-associated virus (AAV) and other parvoviruses inhibit proliferation of nonpermissive cells. The mechanism of this inhibition is not thoroughly understood. To learn how AAV interacts with host cells, we investigated AAV's interaction with adenovirus (Ad), AAV's most efficient helper virus. Coinfection with Ad and AAV results in an AAV-mediated inhibition of Ad5 gene expression and replication. The AAV replication proteins (Rep) activate and repress gene expression from AAV and heterologous transcription promoters. To investigate the role of Rep proteins in the suppression of Ad propagation, we performed chromatin immunoprecipitation analyses that demonstrated in vivo AAV Rep protein interaction with the Ad E2a gene promoter. In vitro binding of purified AAV Rep68 protein to the Ad E2a promoter was characterized by electrophoretic mobility shift assays (Kd = 200 ± 25 nM). A 38 bp, Rep68-protected region (5′-TAAGAGTCAGCGCGCAGTATTTACTGAAGAGAGCCT-3′) was identified by DNase I footprint analysis. The 38-bp protected region contains the weak E2a TATA box, sequence elements that resemble the Rep binding sites identified by random sequence oligonucleotide selection, and the transcription start site. These results suggest that Rep binding to the E2a promoter contributes to the inhibition of E2a gene expression from the Ad E2a promoter and may affect Ad replication.


2000 ◽  
Vol 68 (10) ◽  
pp. 5953-5959 ◽  
Author(s):  
Dana Davis ◽  
John E. Edwards ◽  
Aaron P. Mitchell ◽  
Ashraf S. Ibrahim

ABSTRACT The ability of Candida albicans to respond to diverse environments is critical for its success as a pathogen. TheRIM101 pathway controls gene expression and the yeast-to-hyphal transition in C. albicans in response to changes in environmental pH in vitro. In this study, we found that theRIM101 pathway is necessary in vivo for pathogenesis. First, we show thatrim101−/rim101− andrim8−/rim8− mutants have a significant reduction in virulence using the mouse model of hematogenously disseminated systemic candidiasis. Second, these mutants show a marked reduction in kidney pathology. Third, therim101−/rim101− andrim8−/rim8− mutants show defects in the ability to damage endothelial cells in situ. Finally, we show that an activated allele of RIM101, RIM101-405, is a suppressor of the rim8− mutation in vivo as it rescues the virulence, histological, and endothelial damage defects of the rim8−/rim8− mutant. These results demonstrate that the RIM101 pathway is required for C. albicans virulence in vivo and that the function of Rim8p in pathogenesis is to activate Rim101p.


2018 ◽  
Vol 115 (16) ◽  
pp. E3692-E3701 ◽  
Author(s):  
Chaitanya Rastogi ◽  
H. Tomas Rube ◽  
Judith F. Kribelbauer ◽  
Justin Crocker ◽  
Ryan E. Loker ◽  
...  

Transcription factors (TFs) control gene expression by binding to genomic DNA in a sequence-specific manner. Mutations in TF binding sites are increasingly found to be associated with human disease, yet we currently lack robust methods to predict these sites. Here, we developed a versatile maximum likelihood framework named No Read Left Behind (NRLB) that infers a biophysical model of protein-DNA recognition across the full affinity range from a library of in vitro selected DNA binding sites. NRLB predicts human Max homodimer binding in near-perfect agreement with existing low-throughput measurements. It can capture the specificity of the p53 tetramer and distinguish multiple binding modes within a single sample. Additionally, we confirm that newly identified low-affinity enhancer binding sites are functional in vivo, and that their contribution to gene expression matches their predicted affinity. Our results establish a powerful paradigm for identifying protein binding sites and interpreting gene regulatory sequences in eukaryotic genomes.


1989 ◽  
Vol 9 (11) ◽  
pp. 4706-4712
Author(s):  
A H Siddiqui ◽  
M C Brandriss

The PUT1 and PUT2 genes encoding the enzymes of the proline utilization pathway of Saccharomyces cerevisiae are induced by proline and activated by the product of the PUT3 gene. Two upstream activation sequences (UASs) in the PUT1 promoter were identified by homology to the PUT2 UAS. Deletion analysis of the two PUT1 UASs showed that they were functionally independent and additive in producing maximal levels of gene expression. The consensus PUT UAS is a 21-base-pair partially palindromic sequence required in vivo for induction of both genes. The results of a gel mobility shift assay demonstrated that the proline-specific UAS is the binding site of a protein factor. In vitro complex formation was observed in crude extracts of yeast strains carrying either a single genomic copy of the PUT3 gene or the cloned PUT3 gene on a 2 microns plasmid, and the binding was dosage dependent. DNA-binding activity was not observed in extracts of strains carrying either a put3 mutation that caused a noninducible (Put-) phenotype or a deletion of the gene. Wild-type levels of complex formation were observed in an extract of a strain carrying an allele of PUT3 that resulted in a constitutive (Put+) phenotype. Extracts from a strain carrying a PUT3-lacZ gene fusion formed two complexes of slower mobility than the wild-type complex. We conclude that the PUT3 product is either a DNA-binding protein or part of a DNA-binding complex that recognizes the UASs of both PUT1 and PUT2. Binding was observed in extracts of a strain grown in the presence or absence of proline, demonstrating the constitutive nature of the DNA-protein interaction.


Sign in / Sign up

Export Citation Format

Share Document