Glucose regulates lipid metabolism in fasting king penguins

2003 ◽  
Vol 285 (2) ◽  
pp. R313-R320 ◽  
Author(s):  
Servane F. Bernard ◽  
Jord Orvoine ◽  
René Groscolas

This study aims to determine whether glucose intervenes in the regulation of lipid metabolism in long-term fasting birds, using the king penguin as an animal model. Changes in the plasma concentration of various metabolites and hormones, and in lipolytic fluxes as determined by continuous infusion of [2-3H]glycerol and [1-14C]palmitate, were examined in vivo before, during, and after a 2-h glucose infusion under field conditions. All the birds were in the phase II fasting status (large fat stores, protein sparing) but differed by their metabolic and hormonal statuses, being either nonstressed (NSB; n = 5) or stressed (SB; n = 5). In both groups, glucose infusion at 5 mg·kg-1·min-1 induced a twofold increase in glycemia. In NSB, glucose had no effect on lipolysis (maintenance of plasma concentrations and rates of appearance of glycerol and nonesterified fatty acids) and no effect on the plasma concentrations of triacylglycerols (TAG), glucagon, insulin, or corticosterone. However, it limited fatty acid (FA) oxidation, as indicated by a 25% decrease in the plasma level of β-hydroxybutyrate (β-OHB). In SB, glucose infusion induced an ∼2.5-fold decrease in lipolytic fluxes and a large decrease in FA oxidation, as reflected by a 64% decrease in the plasma concentration of β-OHB. There were also a 35% decrease in plasma TAG, a 6.5- and 2.8-fold decrease in plasma glucagon and corticosterone, respectively, and a threefold increase in insulinemia. These data show that in fasting king penguins, glucose regulates lipid metabolism (inhibition of lipolysis and/or of FA oxidation) and affects hormonal status differently in stressed vs. nonstressed individuals. The results also suggest that in birds, as in humans, the availability of glucose, not of FA, is an important determinant of the substrate mix (glucose vs. FA) that is oxidized for energy production.

2003 ◽  
Vol 284 (2) ◽  
pp. R444-R454 ◽  
Author(s):  
Servane F. Bernard ◽  
Marie-Anne Thil ◽  
René Groscolas

This study aims to determine how glucagon intervenes in the regulation of fuel metabolism, especially lipolysis, at two stages of a spontaneous long-term fast characterized by marked differences in lipid and protein availability and/or utilization (phases II and III). Changes in the plasma concentration of various metabolites and hormones, and in lipolytic fluxes as determined by continuous infusion of [2-3H]glycerol and [1-14C]palmitate, were examined in vivo in a subantarctic bird (king penguin) before, during, and after a 2-h glucagon infusion. In the two fasting phases, glucagon infusion at a rate of 0.025 μg · kg−1 · min−1induced a three- to fourfold increase in the plasma concentration and in the rate of appearance (Ra) of glycerol and nonesterified fatty acids, the percentage of primary reesterification remaining unchanged. Infusion of glucagon also resulted in a progressive elevation of the plasma concentration of glucose and β-hydroxybutyrate and in a twofold higher insulinemia. These changes were not significantly different between the two phases. The plasma concentrations of triacylglycerols and uric acid were unaffected by glucagon infusion, except for a 40% increase in plasma uric acid in phase II birds. Altogether, these results indicate that glucagon in a long-term fasting bird is highly lipolytic, hyperglycemic, ketogenic, and insulinogenic, these effects, however, being similar in phases II and III. The maintenance of the sensitivity of adipose tissue lipolysis to glucagon could suggest that the major role of the increase in basal glucagonemia observed in phase III is to stimulate gluconeogenesis rather than fatty acid delivery.


2020 ◽  
Vol 16 ◽  
Author(s):  
Xi He ◽  
Wenjun Hu ◽  
Fanhua Meng ◽  
Xingzhou Li

Background: The broad-spectrum antiparasitic drug nitazoxanide (N) has been repositioned as a broad-spectrum antiviral drug. Nitazoxanide’s in vivo antiviral activities are mainly attributed to its metabolitetizoxanide, the deacetylation product of nitazoxanide. In reference to the pharmacokinetic profile of nitazoxanide, we proposed the hypotheses that the low plasma concentrations and the low system exposure of tizoxanide after dosing with nitazoxanide result from significant first pass effects in the liver. It was thought that this may be due to the unstable acyloxy bond of nitazoxanide. Objective: Tizoxanide prodrugs, with the more stable formamyl substituent attached to the hydroxyl group rather than the acetyl group of nitazoxanide, were designed with the thought that they might be more stable in plasma. It was anticipated that these prodrugs might be less affected by the first pass effect, which would improve plasma concentrations and system exposure of tizoxanide. Method: These O-carbamoyl tizoxanide prodrugs were synthesized and evaluated in a mouse model for pharmacokinetic (PK) properties and in an in vitro model for plasma stabilities. Results: The results indicated that the plasma concentration and the systemic exposure of tizoxanide (T) after oral administration of O-carbamoyl tizoxanide prodrugs were much greater than that produced by equimolar dosage of nitazoxanide. It was also found that the plasma concentration and the systemic exposure of tizoxanide glucuronide (TG) were much lower than that produced by nitazoxanide. Conclusion: Further analysis showed that the suitable plasma stability of O-carbamoyl tizoxanide prodrugs is the key factor in maximizing the plasma concentration and the systemic exposure of the active ingredient tizoxanide.


1995 ◽  
Vol 73 (9-10) ◽  
pp. 575-592 ◽  
Author(s):  
Harish C. Pant ◽  
Veeranna

Neurofilament proteins (NFPs) are highly phosphorylated molecules in the axonal compartment of the adult nervous system. The phosphorylation of NFP is considered an important determinant of filament caliber, plasticity, and stability. This process reflects the function of NFs during the lifetime of a neuron from differentiation in the embryo through long-term activity in the adult until aging and environmental insult leads to pathology and ultimately death. NF function is modulated by phosphorylation–dephosphorylation in each of these diverse neuronal states. In this review, we have summarized some of these properties of NFP in adult nervous tissue, mostly from work in our own laboratory. Identification of sites phosphorylated in vivo in high molecular weight NFP (NF-H) and properties of NF-associated and neural-specific kinases phosphorylating specific sites in NFP are described. A model to explain the role of NF phosphorylation in determining filament caliber, plasticity, and stability is proposed.Key words: neurofilament proteins, phosphorylation, kinases, phosphatases, regulators, inhibitors, multimesic complex, domains.


2002 ◽  
Vol 13 (10) ◽  
pp. 3441-3451 ◽  
Author(s):  
Ikuo Nakamichi ◽  
Shigetsugu Hatakeyama ◽  
Keiichi I. Nakayama

Mallory bodies (MBs) are cytoplasmic inclusions that contain keratin 8 (K8) and K18 and are present in hepatocytes of individuals with alcoholic liver disease, nonalcoholic steatohepatitis, or benign or malignant hepatocellular neoplasia. Mice fed long term with griseofulvin are an animal model of MB formation. However, the lack of a cellular model has impeded understanding of the molecular mechanism of this process. Culture of HepG2 cells with griseofulvin has now been shown to induce both the formation of intracellular aggregates containing K18 as well as an increase in the abundance of K18 mRNA. Overexpression of K18 in HepG2, HeLa, or COS-7 cells also induced the formation of intracellular aggregates that stained with antibodies to ubiquitin and with rhodamine B (characteristics of MBs formed in vivo), eventually leading to cell death. The MB-like aggregates were deposited around centrosomes and disrupted the microtubular array. Coexpression of K8 with K18 restored the normal fibrous pattern of keratin distribution and reduced the toxicity of K18. In contrast, an NH2-terminal deletion mutant of K8 promoted the formation of intracellular aggregates even in the absence of K18 overexpression. Deregulated expression of K18, or an imbalance between K8 and K18, may thus be an important determinant of MB formation, which compromises the function of centrosomes and the microtubule network and leads to cell death.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
William H Stewart ◽  
Eric George ◽  
Gene L Bidwell ◽  
Heather Chapman ◽  
Fakhri Mahdi ◽  
...  

Background: Preeclampsia is a major obstetrical health concern, affecting 5-8% of all pregnancies. Hallmarked by hypertension and endothelial dysfunction the origin of the disease remains obscure, though it is generally accepted that placental insufficiency/ischemia is a central cause. In response, the placenta secretes pathogenic factors, in particular the anti-angiogenic protein sFlt-1. Currently, there is no effective therapy for the management of the preeclampsia patient. We have recently produced a novel synthetic peptide based on placental growth factor (PlGF) which is maternally restricted by fusion to the synthetic carrier elastin like polypeptide (ELP). Here, we describe its in vivo pharmacokinetics and biodistribution. Methods: Fluorescently labeled ELP-PLGF was administered i.v. and blood sampled serially to determine clearance kinetics. Long-term pharmacokinetics and biodistribution was performed after subcutaneous administration of labeled peptide. Measurements were made on serially drawn blood, and in the whole animal by in vivo imaging. Results: ELP-PlGF exhibited markedly more favorable pharmacokinetics than the normal half life of PlGF, with a terminal half-life of ~10 hours as opposed to ~30 minutes for PlGF alone. Chronic administration found highest levels accumulating in placenta and kidney (two favorable targets for preeclampsia) and liver. A single subcutaneous administration at 100mg/kg resulted in sustained therapeutic plasma concentrations for over 10 days. Conclusion: These data demonstrate that ELP-PlGF has favorable pharmacokinetic and biodistribution profiles. Previous data suggest ELP-PlGF directly antagonizes sFlt-1 in culture. Future studies to assess the in vivo effectiveness of ELP-PlGF in managing placental ischemia induced hypertension and endothelial dysfunction are currently in progress. Acknowledgment: This work was supported by NIH grants R0121527 (GLB), T32HL105324 (OCL), P01HL51971, P20GM104357 (EMG), and R00HL116774 (EMG)


2010 ◽  
Vol 299 (1) ◽  
pp. E117-E125 ◽  
Author(s):  
Kathleen R. Markan ◽  
Michael J. Jurczak ◽  
Margaret B. Allison ◽  
Honggang Ye ◽  
Maria M. Sutanto ◽  
...  

Adipose tissue is a primary site for lipid storage containing trace amounts of glycogen. However, refeeding after a prolonged partial fast produces a marked transient spike in adipose glycogen, which dissipates in coordination with the initiation of lipid resynthesis. To further study the potential interplay between glycogen and lipid metabolism in adipose tissue, the aP2-PTG transgenic mouse line was utilized since it contains a 100- to 400-fold elevation of adipocyte glycogen levels that are mobilized upon fasting. To determine the fate of the released glucose 1-phosphate, a series of metabolic measurements were made. Basal and isoproterenol-stimulated lactate production in vitro was significantly increased in adipose tissue from transgenic animals. In parallel, basal and isoproterenol-induced release of nonesterified fatty acids (NEFAs) was significantly reduced in transgenic adipose tissue vs. control. Interestingly, glycerol release was unchanged between the genotypes, suggesting that enhanced triglyceride resynthesis was occurring in the transgenic tissue. Qualitatively similar results for NEFA and glycerol levels between wild-type and transgenic animals were obtained in vivo during fasting. Additionally, the physiological upregulation of the phospho enolpyruvate carboxykinase cytosolic isoform (PEPCK-C) expression in adipose upon fasting was significantly blunted in transgenic mice. No changes in whole body metabolism were detected through indirect calorimetry. Yet weight loss following a weight gain/loss protocol was significantly impeded in the transgenic animals, indicating a further impairment in triglyceride mobilization. Cumulatively, these results support the notion that the adipocyte possesses a set point for glycogen, which is altered in response to nutritional cues, enabling the coordination of adipose glycogen turnover with lipid metabolism.


Metabolism ◽  
2014 ◽  
Vol 63 (5) ◽  
pp. 702-715 ◽  
Author(s):  
Patrícia C. Lopes ◽  
Amelia Fuhrmann ◽  
José Sereno ◽  
Daniel O. Espinoza ◽  
Maria João Pereira ◽  
...  

1990 ◽  
Vol 127 (3) ◽  
pp. 487-496 ◽  
Author(s):  
S. C. Wilson ◽  
R. A. Chairil ◽  
F. J. Cunningham ◽  
R. T. Gladwell

ABSTRACT The contents of LHRH-I and -II in the anterior hypothalamus and posterior hypothalamus (including the mediobasal hypothalamus and median eminence) were measured at 90, 180 and 360 min after the i.m. injection of laying hens with progesterone. Whilst no changes were observed in the content of LHRH-I in the anterior hypothalamus, LHRH-I in the posterior hypothalamus tended to fall at 90 and 180 min after injection of progesterone in hens maintained on 16 h light:8 h darkness (16L:8D) and 8L:16D respectively. Pretreatment of laying hens with tamoxifen significantly increased the hypothalamic contents of LHRH-I and -II, raised the basal plasma concentration of LH and modified the LH response to progesterone injection. In hens in which tamoxifen prevented an increase in the plasma concentration of LH after progesterone injection, the content of LHRH-I in the posterior hypothalamus remained unchanged. In contrast, in hens in which progesterone stimulated a steep increase in LH within 90 min, there was a pronounced and significant fall in LHRH-I content of the posterior hypothalamus. No change in the hypothalamic content of LHRH-II was observed during the progesterone-induced surge of LH until plasma concentrations had attained maximal values or started to decline. Then, in hens maintained on 16L:8D, a significant fall in the content of LHRH-II in the anterior hypothalamus was found at both 180 and 360 min after injection with progesterone. Tests in vitro and in vivo of the responsiveness of the pituitary gland to synthetic LHRH-I and -II revealed no change at 90 min after injection of laying hens with progesterone, when plasma concentrations of LH were increasing, but a pronounced reduction when plasma LH concentrations were maximal or falling. These results suggest that LHRH-I mediates in the progesterone-induced increase in the plasma concentration of LH. Although the subsequent decline in plasma LH was associated with a reduced responsiveness of the pituitary gland to LHRH, a significant correlation between the contents of LHRH-I and -II in the anterior hypothalamus and a fall in the hypothalamic content of LHRH-II when plasma LH was maximal or declining allows the possibility of an involvement of this peptide in the neuroendocrine events preceding ovulation. Journal of Endocrinology (1990) 127, 487–496


1996 ◽  
Vol 84 (2) ◽  
pp. 348-353. ◽  
Author(s):  
M. F. Levine ◽  
J. Sarner ◽  
J. Lerman ◽  
P. Davis ◽  
N. Sikich ◽  
...  

Background Sevoflurane is degraded in vivo in adults yielding plasma concentrations of inorganic fluoride [F-] that, in some patients, approach or exceed the 50- micron theoretical threshold for nephrotoxicity. To determine whether the plasma concentration of inorganic fluoride [F-] after 1-5 MAC x h sevoflurane approaches a similar concentration in children, the following study in 120 children scheduled for elective surgery was undertaken. Methods Children were randomly assigned to one of three treatment groups before induction of anesthesia: group 1 received sevoflurane in air/oxygen 30% (n = 40), group 2 received sevoflurane in 70% N2O/30% O2 (n = 40), and group 3 received halothane in 70% N2O/30% O2 (n = 40). Mapleson D or F circuits with fresh gas flows between 3 and 61/min were used Whole blood was collected at induction and termination of anesthesia and at 1, 4, 6, 12, and 18 or 24 h postoperatively for determination of the [F-]. Plasma urea and creatinine concentrations were determined at induction of anesthesia and 18 or 24 h postoperatively. Results The mean (+/- SD) duration of sevoflurane anesthesia, 2.7 +/- 1.6 MAC x h (range 1.1-8.9 MAC x h), was similar to that of halothane, 2.5 +/- 1.1 MAC x h. The peak [F-] after sevoflurane was recorded at 1 h after termination of the anesthetic in all but three children (whose peak values were recorded between 4 and 6 h postanesthesia). The mean peak [F-] after sevoflurane was 15.8 +/- 4.6 microns. The [F-] decreased to <6.2 microns b 24 h postanesthesia. Both the peak [F-] (r2 = 0.50) and the area under the plasma concentration of inorganic fluoride-time curve (r2 = 0.57) increased in parallel with the MAC x h of sevoflurane. The peak [F-] after halothane, 2.0 +/- 1.2 microns, was significantly less than that after sevoflurane (P<0.00012) and did not correlate with the duration of halothane anesthesia (MAC x h; r2 = 0.007). Plasma urea concentrations decreased 24 h after surgery compared with preoperative values for both anesthetics (P<0.01), whereas plasma creatinine concentrations did not change significantly with either anesthetic. Conclusions It was concluded that, during the 24 h after 2.7 +/- 1.6 MAC x h sevoflurane, the peak recorded [F-] is low (15.8 microns), F- is eliminated rapidly, and children are unlikely to be at risk of nephrotoxicity from high [F-].


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Virginia Basso ◽  
Dat Q. Tran ◽  
Justin B. Schaal ◽  
Patti Tran ◽  
Yoshihiro Eriguchi ◽  
...  

AbstractInvasive candidiasis is an increasingly frequent cause of serious and often fatal infections in hospitalized and immunosuppressed patients. Mortality rates associated with these infections have risen sharply due to the emergence of multidrug resistant (MDR) strains of C. albicans and other Candida spp., highlighting the urgent need of new antifungal therapies. Rhesus theta (θ) defensin-1 (RTD-1), a natural macrocyclic antimicrobial peptide, was recently shown to be rapidly fungicidal against clinical isolates of MDR C. albicans in vitro. Here we found that RTD-1 was rapidly fungicidal against blastospores of fluconazole/caspofungin resistant C. albicans strains, and was active against established C. albicans biofilms in vitro. In vivo, systemic administration of RTD-1, initiated at the time of infection or 24 h post-infection, promoted long term survival in candidemic mice whether infected with drug-sensitive or MDR strains of C. albicans. RTD-1 induced an early (4 h post treatment) increase in neutrophils in naive and infected mice. In vivo efficacy was associated with fungal clearance, restoration of dysregulated inflammatory cytokines including TNF-α, IL-1β, IL-6, IL-10, and IL-17, and homeostatic reduction in numbers of circulating neutrophils and monocytes. Because these effects occurred using peptide doses that produced maximal plasma concentrations (Cmax) of less than 1% of RTD-1 levels required for in vitro antifungal activity in 50% mouse serum, while inducing a transient neutrophilia, we suggest that RTD-1 mediates its antifungal effects in vivo by host directed mechanisms rather than direct fungicidal activity. Results of this study suggest that θ-defensins represent a new class of host-directed compounds for treatment of disseminated candidiasis.


Sign in / Sign up

Export Citation Format

Share Document