Hypocretin/orexin type 1 receptor in brain: role in cardiovascular control and the neuroendocrine response to immobilization stress

2007 ◽  
Vol 292 (1) ◽  
pp. R382-R387 ◽  
Author(s):  
Willis K. Samson ◽  
Sara L. Bagley ◽  
Alastair V. Ferguson ◽  
Meghan M. White

Hypocretin/orexin acts pharmacologically in the hypothalamus to stimulate stress hormone secretion at least in part by an action in the hypothalamic paraventricular nucleus, where the peptide's receptors have been localized. In addition, orexin acts in the brain to increase sympathetic tone and, therefore, mean arterial pressure and heart rate. We provide evidence for the role of endogenously produced hypocretin/orexin in the physiological response to immobilization stress and identify the receptor subtype responsible for this action of the peptide. Antagonism of the orexin type 1 receptor (OX1R) in the brain prevented the ACTH-stimulating effect of centrally administered hypocretin/orexin. Furthermore, pretreatment of animals with the OX1R antagonist blocked the ACTH response to immobilization/restraint stress. The OX1R antagonist did not, however, block the pharmacological or physiological release of prolactin in these two models. Antagonism of the OX1R also blocked the central action of orexin to elevate mean arterial pressures and heart rates in conscious rats. These data suggest receptor subtype-selective responses to hypocretin/orexin and provide further evidence for the importance of endogenously produced peptide in the physiological control of stress hormone secretion.

Endocrinology ◽  
2004 ◽  
Vol 145 (11) ◽  
pp. 4890-4896 ◽  
Author(s):  
Meghan M. Taylor ◽  
Willis K. Samson

Abstract Adrenomedullin (AM) has been reported to have actions at each level of the hypothalamo-pituitary-adrenal (HPA) axis, suggesting that the peptide plays a role in the organization of the neuroendocrine responses to stress. We examined the mechanism by which AM regulates the central nervous system branch of the HPA axis as well as the possible role of AM in the modulation of the releases of two other hormones, prolactin and GH, whose secretions also are altered by stress. Intracerebroventricular administration of AM led to elevated plasma corticosterone levels in unrestrained, conscious male rats. This effect was abrogated by pretreatment with a CRH antagonist, suggesting that AM activates the HPA axis by causing the release of CRH into hypophyseal portal vessels. In addition, AM given intracerebroventricularly stimulated the release of prolactin but did not alter the secretion of GH. We propose that AM produced in the brain may be an important neuromodulator of the hormonal stress response.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Takuto Nakamura ◽  
Masanobu Yamazato ◽  
Akio Ishida ◽  
Yusuke Ohya

Objective: Aminopeptidase A (APA) have important role in conversion of Ang II to Ang III. Intravenous APA administration lowers blood pressure in hypertensive rats. In contrast, APA inhibition in the brain lowers blood pressure in hypertensive rats. Therefore APA might have different role on cardiovascular regulation. However, a role of APA and Ang III on cardiovascular regulation especially in the brain has not been fully understood. Our purpose of present study was to investigate a role of APA and Ang III in the brain on cardiovascular regulation in conscious state. Method: 12-13 weeks old Wistar Kyoto rat (WKY) and 12-16 weeks old spontaneously hypertensive rat (SHR) were used. i) APA distribution in the brain was evaluated by immunohistochemistry. Protein expression of APA was evaluated by Western blotting. Enzymatic activity of APA was evaluated using L-glutamic acid γ-(4-nitroanilide) as a substrate. ii) WKY received icv administration of Ang II 25ng/2μL and Ang III 25ng/2μL. We recorded change in mean arterial pressure (MAP) in conscious and unrestraied state and measured induced drinking time. iii) SHR received icv administeration of recombinant APA 400ng/4μL. We recorded change in MAP in conscious and unrestraied state and measured induced drinking time. Result: i) APA was diffusely immunostained in the cells of brain stem including cardiovascular regulatory area such as rostral ventrolateral medulla. Protein expression and APA activity in the brain were similar between WKY (n=3) and SHR (n=3).ii) Icv administration of Ang II increased MAP by 33.8±3.8 mmHg and induced drinking behavior for 405±90 seconds (n=4). Icv administration of Ang III also increased MAP by 24.7±2.4 mmHg and induced drinking behavior for 258±62 seconds (n=3). These vasopressor activity and induced drinking behavior was completely blocked by pretretment of angiotensin receptor type 1 blocker.iii) Icv administration of APA increased MAP by 10.0±1.7 mmHg (n=3). Conclusion: These results suggested that Ang III in the brain increase blood pressure by Angiotensin type 1 receptor dependent mechanism and APA in the brain may involved in blood pressure regulation as a vasopressor enzyme.


2021 ◽  
Vol 14 (10) ◽  
pp. 1030
Author(s):  
Léa Chaskiel ◽  
Robert Dantzer ◽  
Jan Konsman

Sickness behavior, characterized by on overall reduction in behavioral activity, is commonly observed after bacterial infection. Sickness behavior can also be induced by the peripheral administration of Gram-negative bacterial lipopolysaccharide (LPS) or interleukin-1beta (IL-1β), a pro-inflammatory cytokine released by LPS-activated macrophages. In addition to the microglia, the brain contains perivascular macrophages, which express the IL-1 type 1 receptor (IL-1R1). In the present study, we assessed the role of brain perivascular macrophages in mediating IL-1β-induced sickness behavior in rats. To do so, we used intracerebroventricular (icv) administration of an IL-1β-saporin conjugate, known to eliminate IL-R1-expressing brain cells, prior to systemic or central IL-1β injection. Icv IL-1β-saporin administration resulted in a reduction in brain perivascular macrophages, without altering subsequent icv or ip IL-1β-induced reductions in food intake, locomotor activity, and social interactions. In conclusion, the present work shows that icv IL-1β-saporin administration is an efficient way to target brain perivascular macrophages, and to determine whether these cells are involved in IL-1β-induced sickness behavior.


2013 ◽  
Vol 144 (5) ◽  
pp. S-297
Author(s):  
Vincent Cibert-Goton ◽  
James R. Hockley ◽  
Michael Tranter ◽  
George Boundouki ◽  
Mark D. Baker ◽  
...  

2010 ◽  
Vol 107 (5) ◽  
pp. 2289-2294 ◽  
Author(s):  
Claire I. Dixon ◽  
Hannah V. Morris ◽  
Gerome Breen ◽  
Sylvane Desrivieres ◽  
Sarah Jugurnauth ◽  
...  

Because GABAA receptors containing α2 subunits are highly represented in areas of the brain, such as nucleus accumbens (NAcc), frontal cortex, and amygdala, regions intimately involved in signaling motivation and reward, we hypothesized that manipulations of this receptor subtype would influence processing of rewards. Voltage-clamp recordings from NAcc medium spiny neurons of mice with α2 gene deletion showed reduced synaptic GABAA receptor-mediated responses. Behaviorally, the deletion abolished cocaine’s ability to potentiate behaviors conditioned to rewards (conditioned reinforcement), and to support behavioral sensitization. In mice with a point mutation in the benzodiazepine binding pocket of α2-GABAA receptors (α2H101R), GABAergic neurotransmission in medium spiny neurons was identical to that of WT (i.e., the mutation was silent), but importantly, receptor function was now facilitated by the atypical benzodiazepine Ro 15-4513 (ethyl 8-amido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo [1,5-a] [1,4] benzodiazepine-3-carboxylate). In α2H101R, but not WT mice, Ro 15-4513 administered directly into the NAcc-stimulated locomotor activity, and when given systemically and repeatedly, induced behavioral sensitization. These data indicate that activation of α2−GABAA receptors (most likely in NAcc) is both necessary and sufficient for behavioral sensitization. Consistent with a role of these receptors in addiction, we found specific markers and haplotypes of the GABRA2 gene to be associated with human cocaine addiction.


2016 ◽  
Vol 130 (15) ◽  
pp. 1307-1326 ◽  
Author(s):  
Bryna S.M. Chow ◽  
Terri J. Allen

Angiotensin II (Ang II) is well-considered to be the principal effector of the renin–angiotensin system (RAS), which binds with strong affinity to the angiotensin II type 1 (AT1R) and type 2 (AT2R) receptor subtype. However, activation of both receptors is likely to stimulate different signalling mechanisms/pathways and produce distinct biological responses. The haemodynamic and non-haemodynamic effects of Ang II, including its ability to regulate blood pressure, maintain water–electrolyte balance and promote vasoconstriction and cellular growth are well-documented to be mediated primarily by the AT1R. However, its biological and functional effects mediated through the AT2R subtype are still poorly understood. Recent studies have emphasized that activation of the AT2R regulates tissue and organ development and provides in certain context a potential counter-regulatory mechanism against AT1R-mediated actions. Thus, this review will focus on providing insights into the biological role of the AT2R, in particular its actions within the renal and cardiovascular system.


2005 ◽  
Vol 98 (2) ◽  
pp. 565-571 ◽  
Author(s):  
G. I. Lancaster ◽  
Q. Khan ◽  
P. T. Drysdale ◽  
F. Wallace ◽  
A. E. Jeukendrup ◽  
...  

The present study was undertaken to examine the role of the exercise-induced stress hormone response on the regulation of type 1 and type 2 T lymphocyte intracellular cytokine production. Subjects performed 2.5 h of cycling exercise at 65% maximal O2 uptake while ingesting a 6.4% carbohydrate (CHO) solution, 12.8% CHO solution, or a placebo. Peripheral whole blood samples were stimulated and stained for T lymphocyte surface antigens (CD4 and CD8). Cells were then permeabilized, stained for intracellular cytokines, and analyzed using flow cytometry. Exercise resulted in a decrease ( P < 0.05) in the number and percentage of IFN-γ positive CD4+ and CD8+ T lymphocytes. These stimulated cells produced less IFN-γ immediately postexercise ( P < 0.05) and 2-h postexercise ( P < 0.05) compared with preexercise. However, CHO ingestion, which attenuated the exercise-induced stress hormone response compared with placebo ( P < 0.05), prevented both the decrease in the number and percentage of IFN-γ-positive CD4+ and CD8+ T lymphocytes and the suppression of IFN-γ production from stimulated CD4+ and CD8+ T lymphocytes. There was no effect of exercise on the number of, or cytokine production from, IL-4-positive CD4+ or CD8+ T lymphocytes. These data provide support for the role of exercise-induced elevations in stress hormones in the regulation of type 1 T lymphocyte cytokine production and distribution.


Reproduction ◽  
2002 ◽  
pp. 497-506 ◽  
Author(s):  
DR Grattan

The role of prolactin in the regulation of mammary gland development and function during pregnancy and lactation is well established. However, in addition, prolactin appears to have a much wider role in the physiology of lactation. There is widespread expression of prolactin receptors in the hypothalamus during lactation, indicative of a multi-faceted role for prolactin in regulating hypothalamic function. During pregnancy and lactation, the maternal brain undergoes structural and functional modification, allowing the establishment of appropriate behaviour to feed and nurture the offspring, to adjust to the nutritional and metabolic demands of milk production, and to maintain appropriate hormone secretion to allow milk synthesis, secretion and ejection. The coordination of such a range of neurobiological and neuroendocrine adaptations requires an endocrine signalling mechanism, capable of communicating the reproductive state to the brain. Evidence indicates that prolactin is part of this mechanism.


Sign in / Sign up

Export Citation Format

Share Document