Dehydration anorexia is attenuated in oxytocin-deficient mice

2005 ◽  
Vol 288 (6) ◽  
pp. R1791-R1799 ◽  
Author(s):  
Linda Rinaman ◽  
Regis R. Vollmer ◽  
Joseph Karam ◽  
Donnesha Phillips ◽  
Xia Li ◽  
...  

Evidence in rats suggests that central oxytocin (OT) signaling pathways contribute to suppression of food intake during dehydration (i.e., dehydration anorexia). The present study examined water deprivation-induced dehydration anorexia in wild-type and OT −/− mice. Mice were deprived of food alone (fasted, euhydrated) or were deprived of both food and water (fasted, dehydrated) for 18 h overnight. Fasted wild-type mice consumed significantly less chow during a 60-min refeeding period when dehydrated compared with their intake when euhydrated. Conversely, fasting-induced food intake was slightly but not significantly suppressed by dehydration in OT −/− mice, evidence for attenuated dehydration anorexia. In a separate experiment, mice were deprived of water (but not food) overnight for 18 h; then they were anesthetized and perfused with fixative for immunocytochemical analysis of central Fos expression. Fos was elevated similarly in osmo- and volume-sensitive regions of the basal forebrain and hypothalamus in wild-type and OT −/− mice after water deprivation. OT-positive neurons expressed Fos in dehydrated wild-type mice, and vasopressin-positive neurons were activated to a similar extent in wild-type and OT −/− mice. Conversely, significantly fewer neurons within the hindbrain dorsal vagal complex were activated in OT −/− mice after water deprivation compared with activation in wild-type mice. These findings support the view that OT-containing projections from the hypothalamus to the hindbrain are necessary for the full expression of compensatory behavioral and physiological responses to dehydration.

2003 ◽  
Vol 285 (5) ◽  
pp. R1037-R1045 ◽  
Author(s):  
Rose C. Mantella ◽  
Linda Rinaman ◽  
Regis R. Vollmer ◽  
Janet A. Amico

Results from previous studies indicate that oxytocin (OT)-containing neural pathways are activated in laboratory rats after systemic administration of CCK or d-fenfluramine and that centrally released OT may participate in the anorexigenic effects of these treatments. To explore the relationship between feeding behavior and OT function, the effects of CCK and d-fenfluramine on feeding and central c-Fos expression were compared in wild-type (OT+/+) and OT-deficient mice (OT-/-) of C57BL/6 background. Male OT+/+ and OT-/- mice were administered saline or CCK (1, 3, or 10 μg/kg ip) after overnight food deprivation. Saline-treated OT+/+ and OT-/- mice consumed equivalent amounts of food after an overnight fast. CCK inhibited deprivation-induced food intake in a dose-dependent manner to a similar extent in both genotypes. CCK treatment also induced similar hindbrain and forebrain patterns of increased c-Fos expression in mice of both genotypes. After treatment with d-fenfluramine (10 mg/kg ip), both OT+/+ and OT-/- mice consumed significantly less food than untreated controls, with no difference between genotypes. We conclude that OT signaling pathways are unnecessary for the anorexigenic effects of systemically administered CCK and d-fenfluramine in C57BL/6 mice.


2004 ◽  
Vol 287 (3) ◽  
pp. H1141-H1148 ◽  
Author(s):  
Jon J. Andresen ◽  
Frank M. Faraci ◽  
Donald D. Heistad

MnSOD is the only mammalian isoform of SOD that is necessary for life. MnSOD−/− mice die soon after birth, and MnSOD+/− mice are more susceptible to oxidative stress than wild-type (WT) mice. In this study, we examined vasomotor function responses in aortas of MnSOD+/− mice under normal conditions and during oxidative stress. Under normal conditions, contractions to serotonin (5-HT) and prostaglandin F2α (PGF2α), relaxation to ACh, and superoxide levels were similar in aortas of WT and MnSOD+/− mice. The mitochondrial inhibitor antimycin A reduced contraction to PGF2α and impaired relaxation to ACh to a similar extent in aortas of WT and MnSOD+/− mice. The Cu/ZnSOD and extracellular SOD inhibitor diethyldithiocarbamate (DDC) paradoxically enhanced contraction to 5-HT and superoxide more in aortas of WT mice than in MnSOD+/− mice. DDC impaired relaxation to ACh and reduced total SOD activity similarly in aortas of both genotypes. Tiron, a scavenger of superoxide, normalized contraction to 5-HT, relaxation to ACh, and superoxide levels in DDC-treated aortas of WT and MnSOD+/− mice. Hypoxia, which reportedly increases superoxide, reduced contractions to 5-HT and PGF2α similarly in aortas of WT and MnSOD+/− mice. The vasomotor response to acute hypoxia was similar in both genotypes. In summary, under normal conditions and during acute oxidative stress, vasomotor function is similar in WT and MnSOD+/− mice. We speculate that decreased mitochondrial superoxide production may preserve nitric oxide bioavailability during oxidative stress.


2018 ◽  
Author(s):  
Vruti Patel ◽  
Guillaume Bidault ◽  
Joseph E. Chambers ◽  
Stefania Carobbio ◽  
Angharad J. T. Everden ◽  
...  

AbstractPhosphorylation of the translation initiation factor eIF2α within the mediobasal hypothalamus is known to suppress food intake, but the role of the eIF2α phosphatases in regulating body weight is poorly understood. Mice deficient in active PPP1R15A, a stress-inducible eIF2α phosphatase, are healthy and more resistant to endoplasmic reticulum stress than wild type controls. We report that when Ppp1r15a mutant mice are fed a high fat diet they gain less weight than wild type littermates owing to reduced food intake. This results in healthy leaner Ppp1r15a mutant animals with reduced hepatic steatosis and improved insulin sensitivity, albeit with a modest defect in insulin secretion. By contrast, no weight differences are observed between wild type and Ppp1r15a deficient mice fed a standard diet. We conclude that mice lacking the C-terminal PP1-binding domain of PPP1R15A show reduced dietary intake and preserved glucose tolerance. Our data indicate that this results in reduced weight gain and protection from diet-induced obesity.


1998 ◽  
Vol 274 (6) ◽  
pp. R1829-R1833 ◽  
Author(s):  
William Burgess ◽  
Gilles Gheusi ◽  
Jianhua Yao ◽  
Rodney W. Johnson ◽  
Robert Dantzer ◽  
...  

Interleukin-1β (IL-1β) mediates many of the behavioral responses to infection and inflammation, and IL-1β-converting enzyme (ICE) processes intracellular IL-1β, leading to its maturation and secretion. Here we demonstrate that intracerebroventricular injections of lipopolysaccharide (LPS) produced a greater reduction in both food intake and food-motivated behavior in wild-type compared with ICE-deficient (ICE −/−) mice. This defect occurred although ICE −/− mice were able to fully respond to intracerebroventricular injections of IL-1β. In contrast, ICE −/− mice remained fully responsive to intraperitoneal injections of LPS. These results indicate that brain, but not peripheral, IL-1β plays a critical role in the depression in food intake that occurs during inflammation.


Endocrinology ◽  
2003 ◽  
Vol 144 (2) ◽  
pp. 605-611 ◽  
Author(s):  
Yu-Jui Yvonne Wan ◽  
Guang Han ◽  
Yan Cai ◽  
Tiane Dai ◽  
Tamiko Konishi ◽  
...  

Hepatocyte retinoid X receptor (RXR)α-deficient mice and wild-type mice were fed either a regular or a high-saturated-fat diet for 12 wk to study the functional role of hepatocyte RXRα in fatty acid and carbohydrate metabolism. Food intake was significantly reduced in hepatocyte RXRα-deficient mice when either diet was used. The amount of food intake was negatively associated with serum leptin level. Although mutant mice ate less, body weight and fat content were significantly higher in mutant than wild-type mice. Examination of the expression of peroxisome proliferator-activated receptor-α target genes indicated that the peroxisome proliferator-activated receptor-α-mediated pathway was compromised in the mutant mice, which, in turn, might affect fatty-acid metabolism and result in increased body weight and fat content. Although mutant mice were obese, they demonstrated the same degree of insulin sensitivity and the same level of serum insulin as the wild-type mice. However, these mutant mice have improved glucose tolerance. To explore a mechanism that may be responsible for the improved glucose tolerance, serum IGF-I level was examined. Serum IGF-1 level was significantly increased in mutant mice compared with wild-type mice. Taken together, hepatocyte RXRα deficiency increases leptin level and reduces food intake. Those mice also develop obesity, with an unexpected improvement of glucose tolerance. The result also suggests that an increase in serum IGF-I level might be one of the mechanisms leading to improved glucose tolerance in hepatocyte RXRα-deficient mice.


2001 ◽  
Vol 120 (5) ◽  
pp. A728-A728
Author(s):  
D CHEN ◽  
L FRIISHANSEN ◽  
X WANG ◽  
C ZHAO ◽  
H WALDUM ◽  
...  

2020 ◽  
Vol 20 (8) ◽  
pp. 1262-1267
Author(s):  
Haojun Yang ◽  
Hanyang Liu ◽  
YuWen Jiao ◽  
Jun Qian

Background: G protein-coupled bile acid receptor (TGR5) is involved in a number of metabolic diseases. The aim of this study was to identify the role of TGR5 after Roux-en-Y gastric bypass (GBP). Methods: Wild type and TGR5 knockout mice (tgr5-/-) were fed a high-fat diet (HFD) to establish the obesity model. GBP was performed. The changes in body weight and food intake were measured. The levels of TGR5 and peptide YY (PYY) were evaluated by RT-PCR, Western blot, and ELISA. Moreover, the L-cells were separated from wild type and tgr5-/- mice. The levels of PYY in L-cells were evaluated by ELISA. Results: The body weights were significantly decreased after GBP in wild type mice (p<0.05), but not tgr5-/- mice (p>0.05). Food intake was reduced after GBP in wild type mice, but also not significantly affected in tgr5-/- mice (p>0.05). The levels of PYY were significantly increased after GBP compared with the sham group (p<0.05); however, in tgr5-/- mice the expression of PYY was not significantly affected (p>0.05). After INT-777 stimulation in L-cells obtained from murine intestines, the levels of PYY were significantly increased in L-cells tgr5+/+ (p<0.05). Conclusion: Our study suggests that GBP up-regulated the expression of TGR5 in murine intestines, and increased the levels of PYY, which further reduced food intake and decreased the body weight.


Blood ◽  
2003 ◽  
Vol 101 (11) ◽  
pp. 4253-4259 ◽  
Author(s):  
Elodie Belnoue ◽  
Michèle Kayibanda ◽  
Jean-Christophe Deschemin ◽  
Mireille Viguier ◽  
Matthias Mack ◽  
...  

Abstract Infection of susceptible mouse strains with Plasmodium berghei ANKA (PbA) is a valuable experimental model of cerebral malaria (CM). Two major pathologic features of CM are the intravascular sequestration of infected erythrocytes and leukocytes inside brain microvessels. We have recently shown that only the CD8+ T-cell subset of these brain-sequestered leukocytes is critical for progression to CM. Chemokine receptor–5 (CCR5) is an important regulator of leukocyte trafficking in the brain in response to fungal and viral infection. Therefore, we investigated whether CCR5 plays a role in the pathogenesis of experimental CM. Approximately 70% to 85% of wild-type and CCR5+/- mice infected with PbA developed CM, whereas only about 20% of PbA-infected CCR5-deficient mice exhibited the characteristic neurologic signs of CM. The brains of wild-type mice with CM showed significant increases in CCR5+ leukocytes, particularly CCR5+ CD8+ T cells, as well as increases in T-helper 1 (Th1) cytokine production. The few PbA-infected CCR5-deficient mice that developed CM exhibited a similar increase in CD8+ T cells. Significant leukocyte accumulation in the brain and Th1 cytokine production did not occur in PbA-infected CCR5-deficient mice that did not develop CM. Moreover, experiments using bone marrow (BM)–chimeric mice showed that a reduced but significant proportion of deficient mice grafted with CCR5+ BM develop CM, indicating that CCR5 expression on a radiation-resistant brain cell population is necessary for CM to occur. Taken together, these results suggest that CCR5 is an important factor in the development of experimental CM.


2012 ◽  
Vol 117 (2) ◽  
pp. 329-338 ◽  
Author(s):  
Willem-Jan M. Schellekens ◽  
Hieronymus W. H. van Hees ◽  
Michiel Vaneker ◽  
Marianne Linkels ◽  
P. N. Richard Dekhuijzen ◽  
...  

Background Mechanical ventilation induces diaphragm muscle atrophy, which plays a key role in difficult weaning from mechanical ventilation. The signaling pathways involved in ventilator-induced diaphragm atrophy are poorly understood. The current study investigated the role of Toll-like receptor 4 signaling in the development of ventilator-induced diaphragm atrophy. Methods Unventilated animals were selected for control: wild-type (n = 6) and Toll-like receptor 4 deficient mice (n = 6). Mechanical ventilation (8 h): wild-type (n = 8) and Toll-like receptor 4 deficient (n = 7) mice.Myosin heavy chain content, proinflammatory cytokines, proteolytic activity of the ubiquitin-proteasome pathway, caspase-3 activity, and autophagy were measured in the diaphragm. Results Mechanical ventilation reduced myosin content by approximately 50% in diaphragms of wild-type mice (P less than 0.05). In contrast, ventilation of Toll-like receptor 4 deficient mice did not significantly affect diaphragm myosin content. Likewise, mechanical ventilation significantly increased interleukin-6 and keratinocyte-derived chemokine in the diaphragm of wild-type mice, but not in ventilated Toll-like receptor 4 deficient mice. Mechanical ventilation increased diaphragmatic muscle atrophy factor box transcription in both wild-type and Toll-like receptor 4 deficient mice. Other components of the ubiquitin-proteasome pathway and caspase-3 activity were not affected by ventilation of either wild-type mice or Toll-like receptor 4 deficient mice. Mechanical ventilation induced autophagy in diaphragms of ventilated wild-type mice, but not Toll-like receptor 4 deficient mice. Conclusion Toll-like receptor 4 signaling plays an important role in the development of ventilator-induced diaphragm atrophy, most likely through increased expression of cytokines and activation of lysosomal autophagy.


Sign in / Sign up

Export Citation Format

Share Document