Glucocorticoid negative feedback in sheep corticotrophs: a comparison with AtT-20 corticotroph tumor cells

1994 ◽  
Vol 267 (2) ◽  
pp. R463-R469
Author(s):  
T. P. Clark ◽  
R. J. Kemppainen

Early glucocorticoid feedback in sheep anterior pituitary (AP) cells was compared and contrasted with that in mouse pituitary tumor AtT-20 cells. Dexamethasone (DEX) inhibited corticotropin-releasing hormone (CRH)-stimulated adrenocorticotropin (ACTH) release in a concentration- and time-dependent manner with similar potency amongst cell types. This inhibition was mediated through type II glucocorticoid receptors and required the synthesis of new protein. However, stimulation of protein kinase C with phorbol 12-myristate 13-acetate (PMA) resulted in greater ACTH release and greater inhibition by DEX in sheep AP cells. In contrast to sheep AP cells, AtT-20 cells were insensitive to glucocorticoids when secretion was stimulated by KCl depolarization or the voltage-dependent calcium channel agonist, maitotoxin (MTX). In both cell types, CRH-, KCl-, and MTX-stimulated ACTH release was inhibited by the calcium channel blocker, nifedipine (NIF). Whereas NIF also inhibited PMA-induced ACTH secretion in AtT-20 cells, it did not in sheep AP cells. These data demonstrate that early glucocorticoid feedback is operative in sheep corticotrophs and that AtT-20 cells appear to serve as an appropriate mechanistic model for aspects of negative feedback when the CRH-protein kinase A pathway is activated but may not be appropriate when ACTH secretion is activated via other intracellular signaling pathways.

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1443
Author(s):  
Yoshiaki Kamiyama ◽  
Sotaro Katagiri ◽  
Taishi Umezawa

Reversible phosphorylation is a major mechanism for regulating protein function and controls a wide range of cellular functions including responses to external stimuli. The plant-specific SNF1-related protein kinase 2s (SnRK2s) function as central regulators of plant growth and development, as well as tolerance to multiple abiotic stresses. Although the activity of SnRK2s is tightly regulated in a phytohormone abscisic acid (ABA)-dependent manner, recent investigations have revealed that SnRK2s can be activated by group B Raf-like protein kinases independently of ABA. Furthermore, evidence is accumulating that SnRK2s modulate plant growth through regulation of target of rapamycin (TOR) signaling. Here, we summarize recent advances in knowledge of how SnRK2s mediate plant growth and osmotic stress signaling and discuss future challenges in this research field.


2001 ◽  
Vol 226 (4) ◽  
pp. 283-295 ◽  
Author(s):  
Robert V. Farese

Insulin provokes rapid changes in phospholipid metabolism and thereby generates biologically active lipids that serve as intracellular signaling factors that regulate glucose transport and glycogen synthesis. These changes include: (i) activation of phosphatidylinositol 3-kinase (PI3K) and production of PIP3; (ii) PIP3-dependent activation of atypical protein kinase Cs (PKCs); (iii) PIP3-dependent activation of PKB; (iv) PI3K-dependent activation of phospholipase D and hydrolysis of phosphatidyicholine with subsequent increases in phosphatidic acid (PA) and diacyiglycerol (DAG); (v) PI3K-independent activation of glycerol-3-phosphate acylytansferase and increases in de novo synthesis of PA and DAG; and (vi) activation of DAG-sensitive PKCs. Recent findings suggest that atypical PKCs and PKB serve as important positive regulators of insulin-stimulated glucose metabolism, whereas mechanisms that result in the activation of DAG-sensitive PKCs serve mainly as negative regulators of insulin signaling through PI3K. Atypical PKCs and PKB are rapidly activated by insulin in adipocytes, liver, skeletal muscles, and other cell types by a mechanism requiring PI3K and its downstream effector, 3-phosphoinositide-dependent protein kinase-1 (PDK-1), which, in conjunction with PIP3, phosphorylates critical threonine residues in the activation loops of atypical PKCs and PKB. PIP3 also promotes increases in autophosphorylation and allosteric activation of atypical PKCs. Atypical PKCs and perhaps PKB appear to be required for insulin-induced translocation of the GLUT 4 glucose transporter to the plasma membrane and subsequent glucose transport. PKB also appears to be the major regulator of glycogen synthase. Together, atypical PKCs and PKB serve as a potent, integrated PI3K/PDK-1-directed signaling system that is used by insulin to regulate glucose metabolism.


1997 ◽  
Vol 272 (1) ◽  
pp. C82-C89 ◽  
Author(s):  
S. Ledoux ◽  
J. C. Dussaule ◽  
C. Chatziantoniou ◽  
N. Ardaillou ◽  
S. Vandermeersch ◽  
...  

The purpose of this work was to examine whether the level of cAMP accumulation and protein kinase A (PKA) activity influence atrial natriuretic factor (ANF)-dependent guanosine 3',5'-cyclic monophosphate (cGMP) production in two renal cell types: rabbit cortical vascular smooth muscle cells (RCSMC) and SV-40-transformed human glomerular visceral epithelial cells (HGVEC-SV1). N-[2-(p-bromocinnamylamino)ethyl]- 5-isoquinolinesulfonamide (H-89), a PKA inhibitor, decreased ANF-stimulated cGMP production in RCSMC in a time- and concentration-dependent manner. ANF-stimulated cGMP production was markedly inhibited after prolonged 9- and 18-h incubations with 25 microM H-89 (52 and 65%, respectively) but was not altered after exposure of cells to this agent for 1 h. 1-(5-Isoquinolinylsulfonyl)-2-methylpiperazine and N-(2-[methylamino]ethyl)-5-isoquinolinesulfonamide, protein kinase inhibitors not selective for PKA, did not reproduce the effect of H-89, even at higher concentrations (50 and 100 microM). Cycloheximide (10 microM), a protein synthesis inhibitor, limited the inhibitory effect of H-89, although alone it did not modify the ANF-stimulated cGMP production. H-89 did not affect cGMP production when it was stimulated by SIN-1, a nitric oxide donor. Prolonged incubation (18 h) with 8-bromo cAMP or cholera toxin, an activator of Gs protein resulting in adenylate cyclase stimulation, enhanced ANF-dependent cGMP production by 225 and 176%, respectively. This stimulatory effect was blocked by 25 microM H-89. 125I-ANF binding to RCSMC at 4 degrees C was not affected by preincubation of the cells with H-89. There was a 44% decrease in the expression of ANF C receptors measured as the ANF-(4-23)-displaceable 125I-ANF binding at 37 degrees C, which could not, however, explain the inhibitory effect of H-89 on cGMP production. Modulation of ANF- and C-type natriuretic peptide-dependent cGMP production by H-89 and cholera toxin was also found in HGVEC-SV1 with the same characteristics as in RCSMC. Taken together, these results suggest that PKA activity controls the function of natriuretic peptide guanylate cyclase-coupled receptors in the two cell types studied. PKA-dependent inhibition of a negatively regulatory protein distinct from the receptor itself seems necessary for a full cGMP response.


1993 ◽  
Vol 264 (5) ◽  
pp. F845-F853
Author(s):  
M. M. Friedlaender ◽  
D. Jain ◽  
Z. Ahmed ◽  
D. Hart ◽  
R. L. Barnett ◽  
...  

Previous work from this laboratory has identified an endothelin (ET) type A (ETA) receptor on cultured rat renal medullary interstitial cells (RMIC), coupled to phosphatidylinositol-specific phospholipase C (PI-PLC), dihydropyridine-insensitive receptor-operated Ca2+ channels, and phospholipase A2. The current studies explored a role for ET stimulation of phosphatidylcholine-specific phospholipase D (PC-PLD) in intracellular signaling of this cell type. ET stimulated PLD activation, as measured by phosphatidic acid (PA) or phosphatidylethanol (PEt) accumulation, in a time- and concentration-dependent manner. Inhibition of diacylglycerol (DAG) kinase by ethylene glycol dioctanoate or 6-(2)4-[(4-fluorophenyl)-phenylmethylene]-1-piperadinyl]ethy l-7-methyl-5H - thiaxolo-[3,2-alpyrimidin]-5-one (R 59022) failed to blunt PA accumulation, indicating that PLD, and not DAG, was the source of PA. Inhibition of PA phosphohydrolase (PAP) by propranolol increased late accumulation of PA, suggesting that the prevailing metabolic flow was in the direction of PA to DAG. Phorbol 12-myristate 13-acetate (PMA) augmented ET-evoked PEt accumulation, whereas downregulation of protein kinase C (PKC) obviated agonist-induced PEt production. PMA augmentation of PLD activity proceeded independent of cytosolic free Ca2+ concentration. Ca2+ derived from either intracellular or extracellular sources enhanced ET-related PEt accumulation but was without effect in PKC-downregulated cells. Collectively, these observations indicate that ET stimulates PLD production in RMIC. PKC is the major regulator of this process, with Ca2+ playing a secondary, modulatory role. In addition, these data suggest that PC-PLD is coupled to the ETA receptor.


2001 ◽  
Vol 86 (11) ◽  
pp. 5554-5563 ◽  
Author(s):  
J. D. Veldhuis ◽  
A. Iranmanesh ◽  
D. Naftolowitz ◽  
N. Tatham ◽  
F. Cassidy ◽  
...  

To explore the mechanisms of homeostatic adaptation of the hypothalamo-pituitary-adrenal axis to an experimental low-feedback condition, we quantitated pulsatile (ultradian), entropic (pattern-sensitive), and 24-h rhythmic (circadian) ACTH secretion during high-dose metyrapone blockade (2 g orally every 2 h for 12 h, and then 1 g every 2 h for 12 h). Plasma ACTH and cortisol concentrations were sampled concurrently every 10 min for 24 h in nine adults. The metyrapone regimen reduced the amplitude of nyctohemeral cortisol rhythm by 45% (P = 0.0013) and delayed the time of the cortisol maximum (acrophase) by 7.1 h (P = 0.0002). Attenuated cortisol negative feedback stimulated a 7-fold increase in the mean (24-h) plasma ACTH concentration, which rose from 24 ± 1.6 to 169± 31 pg/ml (ng/liter) (P < 0.0001). Augmented ACTH output was driven by a 12-fold amplification of ACTH secretory burst mass (integral of the underlying secretory pulse) (21 ± 3.1 to 255 ± 64 pg/ml; P < 0.0001), yielding a higher percentage of ACTH secreted in pulses (53 ± 3.5 vs. 92 ± 1.3%; P < 0.0001). There were minimal elevations in basal (nonpulsatile) ACTH secretion (by 50%; P = 0.0049) and ACTH secretory burst frequency (by 36%; P = 0.031). The estimated half-life of ACTH (median, 22 min) and the calculated ACTH secretory burst half-duration (pulse event duration at half-maximal amplitude) (median, 23 min) did not change. Hypocortisolemia evoked remarkably more orderly subordinate patterns of serial ACTH release, as quantitated by the approximate entropy statistic (P= 0.003). This finding was explained by enhanced regularity of successive ACTH secretory pulse mass values (P = 0.032). In contrast, there was no alteration in serial ACTH interpulse-interval (waiting-time) regularity. At the level of 24-h ACTH rhythmicity, cortisol withdrawal enhanced the daily rhythm in ACTH secretory burst mass by 29-fold, elevated the mesor by 16-fold, and delayed the acrophase by 3.4 h from 0831 h to 1154 h (each P < 10−3). In summary, short-term glucocorticoid feedback deprivation primarily (>97% of effect) amplifies pulsatile ACTH secretory burst mass, while minimally elevating basal/nonpulsatile ACTH secretion and ACTH pulse frequency. Reduced cortisol feedback paradoxically elicits more orderly (less entropic) patterns of ACTH release due to emergence of more regular ACTH pulse mass sequences. Cortisol withdrawal concurrently heightens the amplitude and mesor of 24-h rhythmic ACTH release and delays the timing of the ACTH acrophase. In contrast, the duration of underlying ACTH secretory episodes is not affected, which indicates that normal pulse termination may be programmed centrally rather than imposed by rapid negative feedback. Accordingly, we hypothesize that adrenal glucocorticoid negative feedback controls hypothalamo-pituitary-adrenal axis dynamics via the 3-fold distinct mechanisms of repressing the mass of ACTH secretory bursts, reducing the orderliness of the corticotrope release process, and modulating the intrinsic diurnal rhythmicity of the hypothalamo-corticotrope unit.


1990 ◽  
Vol 126 (2) ◽  
pp. 183-191 ◽  
Author(s):  
F. A. Antoni ◽  
G. Dayanithi

ABSTRACT The aim of the present study was to investigate how atriopeptin inhibits secretagogue-stimulated ACTH secretion in vitro. Perifused isolated rat anterior pituitary cells were used throughout; the ACTH content of the perifusate was measured by radioimmunoassy. In the presence of a constant (0·05 nmol/l) concentration of 41-residue corticotrophin-releasing factor (CRF), arginine vasopressin (AVP; 0·05–50 nmol/l) stimulated ACTH secretion in a concentration-dependent manner, the combination of 0·05 nmol CRF/l and 0·5 nmol AVP/l (CRF/AVP) stimulated ACTH release to six- to eightfold above baseline. The effect of CRF/AVP was not modified by tetrodotoxin, but was abolished by CoCl2 and reduced to about 70% of the control stimulus by nifedipine. Application of 103–126 residue atriopeptin for 10 min before and 2·5 min during the CRF/AVP stimulus strongly suppressed the evoked release of ACTH, the maximal inhibition was 75–90% at 10 nmol atriopeptin/l. The calcium ionophore ionomycin (200 nmol/l) reversed the effect of atriopeptin while it had no secretagogue activity of its own, and did not enhance the response to CRF/AVP. A variety of blockers of K+ channels, 4-amino pyridine, tetraethylammonium, apamine, quinine, but not tolbutamide, effectively antagonized the inhibitory action of atriopeptin (10 nmol/l). None of these drugs altered ACTH release evoked by CRF/AVP. In concentration–response experiments, the half effective concentration of 4-aminopyridine and tetraethyl-ammonium were around 1 mmol/l and 10 nmol/l for apamine. Finally, tetraethylammonium and apamine also antagonized the inhibition of CRF/AVP-evoked ACTH release by 8-Br-cGMP. These data suggest that (1) at least two types of K+ channels, a delayed rectifier and the apamine-sensitive Ca2+-activated channel, are functionally important in pituitary corticotroph cells; (2) atriopeptin inhibits CRF/AVP-stimulated ACTH secretion by hyperpolarizing the plasma membrane and thus reducing the uptake of Ca2+ into the cells; (3) cGMP is the intracellular mediator of the action of atriopeptin on corticotroph cells. Journal of Endocrinology (1990) 126, 183–191


2009 ◽  
Vol 83 (16) ◽  
pp. 8141-8152 ◽  
Author(s):  
Joseph D. Sherrill ◽  
Melissa P. Stropes ◽  
Olivia D. Schneider ◽  
Diana E. Koch ◽  
Fabiola M. Bittencourt ◽  
...  

ABSTRACT The presence of numerous G protein-coupled receptor (GPCR) homologs within the herpesvirus genomes suggests an essential role for these genes in viral replication in the infected host. Such is the case for murine cytomegalovirus (MCMV), where deletion of the M33 GPCR or replacement of M33 with a signaling defective mutant has been shown to severely attenuate replication in vivo. In the present study we utilized a genetically altered version of M33 (termed R131A) in combination with pharmacological inhibitors to further characterize the mechanisms by which M33 activates downstream signaling pathways. This R131A mutant of M33 fails to support salivary gland replication in vivo and, as such, is an important tool that can be used to examine the signaling activities of M33. We show that M33 stimulates the transcription factor CREB via heterotrimeric Gq/11 proteins and not through promiscuous coupling of M33 to the Gs pathway. Using inhibitors of signaling molecules downstream of Gq/11, we demonstrate that M33 stimulates CREB transcriptional activity in a phospholipase C-β and protein kinase C (PKC)-dependent manner. Finally, utilizing wild-type and R131A versions of M33, we show that M33-mediated activation of other signaling nodes, including the mitogen-activated protein kinase family member p38α and transcription factor NF-κB, occurs in the absence of Gq/11 and PKC signaling. The results from the present study indicate that M33 utilizes multiple mechanisms to modulate intracellular signaling cascades and suggest that signaling through PLC-β and PKC plays a central role in MCMV pathogenesis in vivo.


2000 ◽  
Vol 279 (6) ◽  
pp. F1116-F1123 ◽  
Author(s):  
Hyung Sub Kang ◽  
Dirk Kerstan ◽  
Long-Jun Dai ◽  
Gordon Ritchie ◽  
Gary A. Quamme

β-Adrenergic agonists influence electrolyte reabsorption in the proximal tubule, loop of Henle, and distal tubule. Although isoproterenol enhances magnesium absorption in the thick ascending limb, it is unclear what effect, if any, β-adrenergic agonists have on tubular magnesium handling. The effects of isoproterenol were studied in immortalized mouse distal convoluted tubule (MDCT) cells by measuring cellular cAMP formation with radioimmunoassays and Mg2+ uptake with fluorescence techniques. Intracellular free Mg2+ concentration ([Mg2+]i) was measured in single MDCT cells by using microfluorescence with mag-fura-2. To assess Mg2+uptake, MDCT cells were first Mg2+ depleted to 0.22 ± 0.01 mM by culturing in Mg2+-free media for 16 h and then placed in 1.5 mM MgCl2, and the changes in [Mg2+]i were determined. [Mg2+]i returned to basal levels, 0.53 ± 0.02 mM, with a mean refill rate, d([Mg2+]i)/d t, of 168 ± 11 nM/s. Isoproterenol stimulated Mg2+ entry in a concentration-dependent manner, with a maximal response of 252 ± 11 nM/s, at a concentration of 10−7 M, that represented a 50 ± 7% increase in uptake rate above control values. This was associated with a sixfold increase in intracellular cAMP generation. Isoproterenol-stimulated Mg2+ uptake was completely inhibited with RpcAMPS, a protein kinase A inhibitor, and U-73122, a phospholipase C inhibitor, and partially blocked by RO 31–822, a protein kinase C inhibitor. Accordingly, isoproterenol-mediated Mg2+ entry rates involve multiple intracellular signaling pathways. Aldosterone potentiated isoproterenol-stimulated Mg2+ uptake (326 ± 31 nM/s), whereas elevation of extracellular Ca2+ inhibited isoproterenol-mediated cAMP accumulation and Mg2+ uptake, 117 ± 37 nM/s. These studies demonstrate that isoproterenol stimulates Mg2+ uptake in a cell line of mouse distal convoluted tubules that is modulated by hormonal and extracellular influences.


1996 ◽  
Vol 271 (4) ◽  
pp. G640-G649 ◽  
Author(s):  
K. Nakamura ◽  
C. J. Zhou ◽  
J. Parente ◽  
C. S. Chew

Epidermal growth factor (EGF) is a potent mitogen for many cell types; however, the best known effect of EGF on gastric parietal cell HCl secretion is inhibition of this response. Using rabbit parietal cells in primary culture, we recently showed that the effect of EGF is biphasic with acute inhibition followed by sustained enhancement of acid secretory-related responses. We hypothesized that EGF might activate a mitogen-activated protein (MAP) kinase signaling pathway in parietal cells, and this pathway might play a role in mediating sustained and/or acute effects of EGF on parietal cell acid secretory-related functions [C. S. Chew, K. Nakamura, and A. C. Petropolous. Am. J. Physiol. 267 (Gastrointest. Liver Physiol. 30): G818-G826, 1994]. We used several methodological approaches to demonstrate the presence of MAP kinase (MAPK) isoforms, extracellular signal-regulated kinases (ERKs) 1 and 2, in parietal cells and to begin to characterize their mechanisms of activation in this highly differentiated cell type. In acutely isolated, 90-98% enriched parietal cells, EGF biphasically activated ERK-1 and ERK-2, with peak response occurring at approximately 5 min followed by a sustained lower level of activation for at least 2 h. The EC50 for EGF (1.2 +/- 0.4 nM) was similar to the previously determined EC50 for the stimulatory effect of EGF on acid secretory responses. In contrast to EGF, the phorbol ester protein kinase C activator 12-O-tetradecanoylphorbol 13-acetate (TPA) induced a sustained activation of ERK-1 and ERK-2 for at least 2 h. Carbachol also activated ERK-1 and ERK-2; however, this response was weaker and monophasic. Neither the Ca2+ ionophore ionomycin nor the adenylyl cyclase activator forskolin altered basal or stimulated ERK activity. Carbachol, but not EGF or TPA, also activated an unidentified 70-kDa protein kinase as detected with in-gel myelin basic protein (MBP) kinase renaturation assays. Parietal cell MAPK activation was not correlated to a shift in apparent relative molecular mass on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels, suggesting that basal phosphorylation of ERK isoforms may be higher in parietal cells compared with actively proliferating cell lines. Also, in contrast to observations in neutrophils, the phosphatidylinositol 3-kinase (PtdIns 3-kinase) inhibitor, wortmannin (0.3-3 microM), failed to inhibit ERK activation in response to EGF, carbachol, or TPA. The combined data indicate that 1) EGF, TPA, and carbachol activate overlapping as well as distinct intracellular signaling pathways in gastric parietal cells, 2) EGF activates ERKs and enhances parietal cell acid secretory related functions via receptors with similar affinities, and 3) in contrast to some cell types, the parietal cell ERK-signaling cascade does not appear to be directly modulated by the PtdIns 3-kinase pathway or by elevated intracellular free Ca2+ or adenosine 3',5'-cyclic monophosphate concentrations.


Sign in / Sign up

Export Citation Format

Share Document