Nitric oxide induces apoptosis in renal tubular epithelial cells through activation of caspase-8

2006 ◽  
Vol 290 (5) ◽  
pp. F1044-F1054 ◽  
Author(s):  
Caigan Du ◽  
Qiunong Guan ◽  
Hong Diao ◽  
Ziqin Yin ◽  
Anthony M. Jevnikar

The susceptibility or resistance of tubular epithelial cells (TEC) to apoptosis is pivotal to the long-term maintenance of kidney function following episodes of inflammation, such as graft rejection. TEC apoptosis can occur with ischemia as well as with proinflammatory cytokines and nitric oxide (NO), produced by infiltrating mononuclear cells. TEC can also produce abundant amounts of NO during inflammation but the role and regulation of NO-induced injury of TEC are not well understood. Apoptosis in TEC in vitro was determined by FACS analysis with annexin-V and propidium iodide staining. NO in culture supernatants was measured by Greiss reagent, and protein expression of inducible NO synthetase (NOS2/iNOS) and caspase-8 was examined by Western blot analysis. Here, we showed that murine TEC produced abundant amounts of NO in response to proinflammatory cytokines (IFN-γ/TNF-α) through upregulation of NOS2, and inhibition of endogenous NO production by l-NMMA reduced TEC apoptosis in cytokine-stimulated cultures. Addition of exogenous NO (sodium nitroprusside) induced TEC apoptosis as well as caspase-8 activation in a dose-dependent manner. The key role of caspase-8 in NO-induced TEC apoptosis was demonstrated by that NO-induced TEC apoptosis can be blocked by caspase-8 inhibition using z-IETD-fmk, caspase-8 silencing with shRNA or by overexpressing the endogenous caspase-8 inhibitor c-FLIP (cellular Flice-inhibitory protein). In conclusion, endogenous NO from NOS2 activity as well as exogenous NO can contribute to renal injury through apoptosis of TEC. Activation of caspase-8 plays a central role in NO-induced apoptosis and caspase-8 inhibition may be an important therapeutic target during renal inflammation.

2017 ◽  
Vol 42 (6) ◽  
pp. 2552-2558 ◽  
Author(s):  
Jingsong Liu ◽  
Ying Zhong ◽  
Guoyong Liu ◽  
Xiaobai Zhang ◽  
Bofei Xiao ◽  
...  

Background/Aims: Transforming growth factor β 1 (TGFβ1) plays a critical role in the epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells (TECs) during renal injury, a major cause of acute renal failure, renal fibrosis and obstructive nephropathy. However, the underlying molecular mechanisms remain ill-defined. Here, we addressed this question. Methods: Expression of TGFβ1, Snail, and phosphorylated Stat3 was examined by immunohistochemistry in the kidney after induction of unilateral ureteral obstruction (UUO) in mice. In vitro, primary TECs were purified by flow cytometry, and then challenged with TGFβ1 with/without presence of specific inhibitors for phosphorylation of SMAD3 or Stat3. Protein levels were determined by Western blotting. Results: We detected significant increases in Snail and phosphorylated Stat3, an activated form for Stat3, in the kidney after induction of UUO in mice. In vitro, TGFβ1-challenged primary TECs upregulated Snail, in a SMAD3/Stat3 dependent manner. Conclusion: Our study sheds light on the mechanism underlying the EMT of TECs after renal injury, and suggests Stat3 signaling as a promising innovative therapeutic target for prevention of renal fibrosis.


2001 ◽  
Vol 281 (6) ◽  
pp. C1819-C1824 ◽  
Author(s):  
Yao Song ◽  
Jay L. Zweier ◽  
Yong Xia

Recent studies showed that heat shock protein 90 (HSP90) enhances nitric oxide (NO) synthesis from endothelial and neuronal NO synthase (eNOS and nNOS, respectively). However, these findings were based on indirect NO measurements. Moreover, although our previous studies showed that the action of HSP90 involves increased Ca2+/calmodulin (Ca2+/CaM) binding, quantitative measurements of the effect of HSP90 on CaM binding to nNOS have been lacking. With electron paramagnetic resonance spectroscopy, we directly measured NO signals from purified nNOS. HSP90 augmented NO formation from nNOS in a dose-dependent manner. Tryptophan fluorescence-quenching measurements revealed that HSP90 markedly reduced the K d of CaM to nNOS (0.5 ± 0.1 nM vs. 9.4 ± 1.8 nM in the presence and absence of HSP90, P < 0.01). Ca2+ ionophore triggered strong NO production from nNOS-transfected cells, and this was significantly reduced by the HSP90 inhibitor geldanamycin. Thus these studies provide direct evidence demonstrating that HSP90 enhances nNOS catalytic function in vitro and in intact cells. The effect of HSP90 is mediated by the enhancement of CaM binding to nNOS.


Author(s):  
Adek Zamrud Adnan ◽  
Muhammad Taher ◽  
Tika Afriani ◽  
Annisa Fauzana ◽  
Dewi Imelda Roesma ◽  
...  

 Objective: The aim of this study was to investigate in vitro anti-inflammatory activity of tinocrisposide using lipopolysaccharides (LPS)-stimulated RAW 264.7 macrophage cells. Tinocrisposide is a furano diterpene glycoside that was isolated in our previous study from Tinospora crispa.Methods: Anti-inflammatory effect was quantified spectrometrically using Griess method by measuring nitric oxide (NO) production after the addition of Griess reagent.Results: The sample concentrations of 1, 5, 25, 50, and 100 μM and 100 μM of dexamethasone (positive control) have been tested against the LPS-stimulated RAW 264.7 cells, and the results showed NO level production of 39.23, 34.00, 28.9, 20.25, 16.3, and 13.68 μM, respectively, and the inhibition level of 22.67, 33.00, 43.03, 60.10, 68.00, and 73%, respectively.Conclusions: From the study, it could be concluded that tinocrisposide was able to inhibit the formation of NO in the LPS-stimulated RAW 264.7 cells in concentration activity-dependent manner, with half-maximal inhibition concentration 46.92 μM. It can be developed as anti-inflammatory candidate drug because NO is a reactive nitrogen species which is produced by NO synthase. The production of NO has been established as a mediator in inflammatory diseases.


Blood ◽  
1999 ◽  
Vol 93 (4) ◽  
pp. 1399-1405 ◽  
Author(s):  
Gerd Lärfars ◽  
Frédérique Lantoine ◽  
Marie-Aude Devynck ◽  
Jan Palmblad ◽  
Hans Gyllenhammar

Abstract Because arachidonate metabolites are potent mediators of inflammation, we have studied the effects of leukotriene B4(LTB4) and the cysteinyl leukotrienes C4 and D4 (LTC4 and LTD4) on the release of nitric oxide (NO), in vitro, by human polymorphonuclear granulocytes (PMN). Two independent and highly sensitive real-time methods were used for these studies, ie, the NO-dependent oxidation of oxyhemoglobin (HbO2) to methemoglobin and a NO-sensitive microelectrode. When activated with LTB4, LTC4, or LTD4, but not with other lipoxygenase products such as 5S-HETE, 5-oxo-ETE or 5S,12S-diHETE, PMN produced NO in a stimulus- and concentration-dependent manner. The rank order of potency was LTB4 = LTC4 &gt; LTD4, corresponding to 232 ± 50 pmol of NO/106 PMN for 100 nmol/L LTB4 after 30 minutes. The kinetic properties of the responses were similar for all three leukotrienes with a maximum response at 13 ± 3 minutes. Cysteinyl leukotriene and LTB4 antagonists inhibited the agonist-induced NO production by 70%, and treatment with Bordetella pertussis toxin, or chelation of cytosolic Ca2+, [Ca2+]i, also efficiently inhibited this response. In contrast, treatment of PMN with cytochalasin B (5 μg/mL) enhanced the LTB4-induced NO formation by 86%. Thus, this is the first demonstration that the cysteinyl leukotrienes LTC4 and LTD4, as well as LTB4, activate NO release from human PMN by surface receptor, G-protein and [Ca2+]i-dependent mechanisms. This effect differs from activation of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, for which only LTB4is an activator.


2010 ◽  
Vol 299 (2) ◽  
pp. F336-F346 ◽  
Author(s):  
Zhou Yang ◽  
Wang Xiaohua ◽  
Jiang Lei ◽  
Tan Ruoyun ◽  
Xiong Mingxia ◽  
...  

Urate is produced as the major end product of purine metabolism. In the last decade, the incidence of hyperuricemia increased markedly, and similar trends in the epidemiology of metabolic syndrome have been observed. Hyperuricemia is associated with renal disease, and recent studies have reported that mild hyperuricemia results in hypertension, intrarenal vascular disease, and renal injury. This has led to the hypothesis that uric acid may contribute to renal fibrosis and progressive renal disease. Our purpose was to investigate the relationship between uric acid and renal tubular injury. We applied the method of intraperitoneal injection of uric acid to generate the hyperuricemic mouse model. Compared with the saline injection group, the expression of lysyl oxidase (LOX) and fibronectin in kidneys was increased significantly in hyperuricemic groups. In vitro, uric acid significantly induced NRK-52E cells to express the ECM marker fibronectin, as well as LOX, which plays a pivotal role in ECM maturation, in a time- and dose-dependent manner. Upregulation of the urate transporter URAT1, which is located in the apical membrane of proximal tubules, sensitized the uric acid-induced fibronectin and LOX induction, while both knocking down URAT1 expression in tubular epithelial cells by RNA interference and inhibiting URAT1 function pharmacologically attenuated LOX and fibronectin expression. Furthermore, knockdown of LOX expression by a small interfering RNA strategy led to a decrease in fibronectin abundance induced by uric acid treatment. In addition, evidence of a uric acid-induced activation of the NF-κB signaling cascade was observed. Our findings highlight a need for carefully reevaluating our previous view on the pathological roles of hyperuricemia in the kidney and nephropathy induced by uric acid in clinical practice.


Author(s):  
Manu Kupani ◽  
Smriti Sharma ◽  
Rajeev Kumar Pandey ◽  
Rajiv Kumar ◽  
Shyam Sundar ◽  
...  

Nitric oxide (NO) is an anti-microbial effector of the innate immune system which plays major role in non-specific killing of various pathogens including protozoan parasites. However, due to subversion of the host’s immune processes by pathogens, suboptimal production of NO is frequently found in many infection models. Previous studies have shown suppressed NO production during Leishmania donovani infection, the causative agent of visceral leishmaniasis (VL). Availability of L-Arginine, a semi-essential amino acid is required for inducible nitric oxide synthase (iNOS) mediated NO production. However, arginase is another enzyme, which if expressed concomitantly, may strongly compete for L-Arginine, and suppress NO production by iNOS. In the present study, plasma nitrite and arginase levels were measured in VL patients before and after successful drug treatment, endemic and non-endemic healthy donors. We observed significantly lower NO levels in the plasma of VL patients as compared to endemic controls, which improved significantly post-treatment. Significantly elevated arginase activity was also observed in the plasma of VL patients, which may be associated with NO deficiency. VL patients also showed significantly higher levels of IL-10 and TGF-β, which are known to regulate expression of arginase in various immune cells. In vitro studies with human peripheral blood mononuclear cells (PBMCs) further corroborated the role of IL-10 and TGF-β in arginase mediated suppression of NO production.


2004 ◽  
Vol 72 (5) ◽  
pp. 2907-2914 ◽  
Author(s):  
Li Fang ◽  
Bogdan J. Nowicki ◽  
Petri Urvil ◽  
Pawel Goluszko ◽  
Stella Nowicki ◽  
...  

ABSTRACT We previously reported that inhibition of nitric oxide (NO) increases the rate of bacteremia and maternal mortality in pregnant rats with uterine infection by Escherichia coli expressing the Dr fimbria (Dr+). Epithelial binding and invasion by Dr+ E. coli has also been shown to be dependent upon the expression level of the cellular receptor decay-accelerating factor (DAF; CD55). Here, we hypothesize that NO-related severity of infection could be mediated by changes in DAF expression and in the rate of epithelial invasion. The cellular basis of NO effects on epithelial invasion with Dr+ E. coli was studied using Ishikawa endometrial carcinoma cells as an in vitro model of the human endometrial epithelium. Initially, we show that Ishikawa cells produce NO and express both NO synthase enzymes, NOS II and NOS III, and DAF protein. We next tested the abilities of both Dr+ E. coli and a Dr− E. coli mutant to invade Ishikawa cells, and invasion was seen only with Dr+ E. coli. Invasion by Dr+ E. coli was decreased by elevated NO production and increased by NO inhibition. Elevated NO production significantly decreased DAF protein and mRNA expression in Ishikawa cells in a time- and dose-dependent manner. Here, we propose that in vitro invasion of an epithelial cell line is directly related to NO-regulated expression of DAF. The significance of NO-regulated receptor-ligand invasion is that it may represent a novel unrecognized phenomenon of epithelial defense against infection.


Vaccines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 109
Author(s):  
Muhammad Ehsan ◽  
Muhammad Haseeb ◽  
Ruisi Hu ◽  
Haider Ali ◽  
Muhammad Ali Memon ◽  
...  

During host-parasite interactions, binding of excretory/secretory proteins (ESPs) on the host immune cells is considered the fundamental phase for regulation of immune responses. In this study, gene encoding Haemonchus contortus tropomyosin (Hc-TpMy), was successfully cloned and expressed, and the recombinant protein after host cell surface attachment was evaluated for immune functional analysis with goat peripheral blood mononuclear cells (PBMCs) in vitro. The isopropyl-β-D-thiogalactopyranoside (IPTG)-induced recombinant protein was successfully recognized by the sera of rat experimentally infected with rHc-TpMy. The immunofluorescence assay detected attachment of rHc-TpMy on the surface of host PBMCs. Furthermore, immunoregulatory roles of rHc-TpMy on cytokines expression, PBMC proliferation, migration, nitric oxide (NO) production, apoptosis and monocytes phagocytosis were observed. The results showed that expression of IL-4 and IFN-γ cytokines, cell proliferation, NO production and PBMC migration were significantly suppressed by goat PBMCs after co-incubation with rHc-TpMy protein. However, the productions of IL-10, IL-17 and TGF-β1 cytokines, PBMCs apoptosis and monocytes phagocytosis were elevated at dose dependent manner. Our findings indicated that rHc-TpMy is an important ES binding protein exhibit distinct immuno-suppressive roles on goat PBMCs which might be a potential molecular target to control haemonchosis in future.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Nachi Ebihara ◽  
Kana Takahashi ◽  
Haruka Takemura ◽  
Yuko Akanuma ◽  
Kazuhito Asano ◽  
...  

Nitric oxide (NO) is known to play pivotal roles as one of the final effector molecules in the development of allergic diseases, including allergic rhinitis (AR). Although quercetin has been reported to attenuate the clinical conditions of AR, its influence on NO production is not well defined. The present study aimed to examine the influence of quercetin on in vitro NO production from nasal epithelial cells after interleukin- (IL-) 4 stimulation. Human nasal epithelial cells (HNEpCs) at a concentration of 1 x 105 cells/ml were stimulated with 10.0 ng/ml of IL-4 in the presence and absence of quercetin. After 48 hours, the culture supernatants were collected and assayed for NO (NO2 and NO3) using the Griess method. The influences of quercetin on the transcription factor, STAT6, activation, and iNOS mRNA expression were also examined using ELISA and real-time quantitative RT-PCR, respectively. Addition of quercetin to cell cultures caused suppression of NO production from HNEpCs after IL-4 stimulation. The minimum concentration of quercetin that caused significant suppression was 1.0 nM. Treatment of cells with quercetin at more than 1.0 nM suppressed STAT6 activation and iNOS mRNA expression induced by IL-4 stimulation. The present results strongly suggested that quercetin favorably modified the clinical condition of AR through the suppression of NO production from nasal epithelial cells after IL-4 stimulation.


1998 ◽  
Vol 9 (2) ◽  
pp. 194-202 ◽  
Author(s):  
J G Deckers ◽  
F J Van Der Woude ◽  
S W Van Der Kooij ◽  
M R Daha

Interstitial rejection of renal allografts is associated with infiltrating mononuclear cells. Mechanisms leading to this mononuclear cell influx are still not fully resolved. The chemokine RANTES (Regulated upon Activation, Normal T cell Expressed and Secreted) is chemotactic for monocytes and T cells. In renal allograft biopsies of patients undergoing rejection, RANTES is found in infiltrating monocytes and T cells, as well as in the tubular epithelium. This study analyzes the production of RANTES in vitro by proximal tubular epithelial cells (PTEC) after stimulation with the inflammatory cytokines interleukin-1alpha, (IL-1alpha), interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha). Unstimulated PTEC or PTEC stimulated with the cytokines IL-1alpha, IFN-gamma, and TNF-alpha alone did not produce detectable amounts of RANTES. However, a combination of IFN-gamma and either IL-1alpha or TNF-alpha resulted in strong induction of RANTES production up to 2046 +/- 817 pg/ml or 2595 +/- 525 pg/ml per 1 x 10(5) PTEC, respectively. After stimulation with IL-1alpha and TNF-alpha, RANTES production was less prominent than the combination of IFN-gamma with either IL-1alpha or TNF-alpha, and only detectable in 5 of 7 PTEC lines tested. The production of RANTES was both dose- and time-dependent and was inhibited by cycloheximide, indicating that de novo protein synthesis is required. Because the production of RANTES by PTEC is more pronounced in the presence of T cell-derived IFN-gamma (in combination with either IL-1alpha or TNF-alpha), it was hypothesized that RANTES produced by PTEC presumably plays a prominent role in the amplification phase of the immune response rather than in the initiation phase.


Sign in / Sign up

Export Citation Format

Share Document