Key enzymes for renal prostaglandin synthesis: site-specific expression in rodent kidney (rat, mouse)

2003 ◽  
Vol 285 (1) ◽  
pp. F19-F32 ◽  
Author(s):  
Valentina Câmpean ◽  
Franziska Theilig ◽  
Alex Paliege ◽  
Matthew Breyer ◽  
Sebastian Bachmann

Prostanoids derived from endogenous cylooxygenase (COX)-mediated arachidonic acid metabolism play important roles in the maintenance of renal blood flow and salt and water homeostasis. The relative importance of COX-1 and COX-2 isoforms is under active investigation. We have performed a comprehensive histochemical analysis by comparing rat and mouse kidneys for cellular and subcellular localization of COX-1 and -2 and microsomal-type PGE synthase (PGES), the rate-limiting biosynthetic enzyme in PGE2 synthesis. A choice of different sera was compared, and the results were confirmed by antigen-retrieval techniques, in situ hybridization, RT-PCR, and the use of COX knockout mice. In the glomerulus, significant COX-1 expression was detected in a subset of mesangial cells. Along the renal tubule, the known COX-2 expression in cTAL and macula densa was paralleled by PGES staining. In the terminal distal convoluted tubule, connecting tubule, and cortical and medullary collecting ducts, a significant COX-1 signal was colocalized with PGES; COX-2 was not found in these sites. Intercalated cells were generally negative. Cortical fibroblasts were COX-1 and PGES positive in mice, whereas in rats only PGES could be reliably detected. Lipid-laden interstitial cells of the inner medulla were COX-1, -2, and PGES positive. Vascular smooth muscle cells were not stained. The present data support prominent functions of renal prostanoids, predominantly PGE2, by defining expression sites of the key enzymes for their biosynthesis in the rat and mouse. Results define the renal cell types involved in prostaglandin autacoid functions within spatially restricted sites such as the juxtaglomerular apparatus, mesangium, distal convolutions and collecting duct, and in compartments of the renal interstitium.

2020 ◽  
Vol 21 (21) ◽  
pp. 8349
Author(s):  
Ivona Kosovic ◽  
Natalija Filipovic ◽  
Benjamin Benzon ◽  
Ivana Bocina ◽  
Merica Glavina Durdov ◽  
...  

Our study analyzed the expression pattern of different connexins (Cxs) and renin positive cells in the juxtaglomerular apparatus (JGA) of developing, postnatal healthy human kidneys and in nephrotic syndrome of the Finnish type (CNF), by using double immunofluorescence, electron microscopy and statistical measuring. The JGA contained several cell types connected by Cxs, and consisting of macula densa, extraglomerular mesangium (EM) and juxtaglomerular cells (JC), which release renin involved in renin-angiotensin- aldosteron system (RAS) of arterial blood pressure control. During JGA development, strong Cx40 expression gradually decreased, while expression of Cx37, Cx43 and Cx45 increased, postnatally showing more equalized expression patterning. In parallel, initially dispersed renin cells localized to JGA, and greatly increased expression in postnatal kidneys. In CNF kidneys, increased levels of Cx43, Cx37 and Cx45 co-localized with accumulations of renin cells in JGA. Additionally, they reappeared in extraglomerular mesangial cells, indicating association between return to embryonic Cxs patterning and pathologically changed kidney tissue. Based on the described Cxs and renin expression patterning, we suggest involvement of Cx40 primarily in the formation of JGA in developing kidneys, while Cx37, Cx43 and Cx45 might participate in JGA signal transfer important for postnatal maintenance of kidney function and blood pressure control.


2002 ◽  
Vol 282 (6) ◽  
pp. F1103-F1110 ◽  
Author(s):  
Yi Bao ◽  
Michael L. Pucci ◽  
Brenda S. Chan ◽  
Run Lu ◽  
Shigekazu Ito ◽  
...  

PGT is a broadly expressed transporter of prostaglandins (PGs) and thromboxane that is energetically poised to take up prostanoids across the plasma membrane. To gain insight into the function of PGT, we generated mouse monoclonal antibody 20 against a portion of putative extracellular loop 5 of rat PGT. Immunoblots of endogenous PGT in rat kidney revealed a 65-kDa protein in a zonal pattern corresponding to PG synthesis rates (papilla ≅ medulla > cortex). Immunocytochemically, PGT in rat kidneys was expressed in glomerular endothelial and mesangial cells, arteriolar endothelial and muscularis cells, principal cells of the collecting duct, medullary interstitial cells, medullary vasa rectae endothelia, and papillary surface epithelium. Proximal tubules, which are known to take up and metabolize PGs, were negative. Immunoblotting and immunocytochemistry revealed that rat platelets also express abundant PGT. Coexpression of the PG synthesis apparatus (cyclooxygenase) and PGT by the same cell suggests that prostanoids may undergo release and reuptake.


Author(s):  
Marlies Elger ◽  
Wilhelm Kriz

The glomerulus performs its functions with three major cell types. Endothelial cells and visceral epithelial cells (podocytes) lie on the inside and outside of the glomerular basement membrane, and together these three structures form the glomerular filtration barrier. Mesangial cells sit in the axial region. Pathologies of all these regions and cell types can be identified. Parietal epithelial cells lining Bowman’s capsule participate in crescent formation, and at the tubular pole some of these cells seem to represent a stem cell population for tubular cells and podocytes. The extraglomerular mesangium and juxtaglomerular apparatus complete the description of the glomerular corpuscle. The structure of these elements, and how they relate to function, are illustrated in detail.


2007 ◽  
Vol 293 (6) ◽  
pp. F1805-F1810 ◽  
Author(s):  
Yuqiang Ge ◽  
Kevin A. Strait ◽  
Peter K. Stricklett ◽  
Tianxin Yang ◽  
Donald E. Kohan

Collecting duct (CD)-derived endothelin-1 (ET-1) exerts natriuretic, diuretic, and hypotensive effects. In vitro studies have implicated cyclooxygenase (COX) metabolites, and particularly PGE2, as important mediators of CD ET-1 effects. However, it is unknown whether PGE2 mediates CD-derived ET-1 actions in vivo. To test this, CD ET-1 knockout (KO) and control mice were studied. During normal salt and water intake, urinary PGE2 excretion was unexpectedly increased in CD ET-1 KO mice compared with controls. Salt loading markedly increased urinary PGE2 excretion in both groups of mice; however, the levels remained relatively higher in KO animals. Acutely isolated inner medullary collecting duct (IMCD) from KO mice also had increased PGE2 production. The increased IMCD PGE2 was COX-2 dependent, since NS-398 blocked all PGE2 production. However, increased CD ET-1 KO COX-2 protein or mRNA could not be detected in inner medulla or IMCD, respectively. Inner medullary COX-1 mRNA and protein levels and IMCD COX-1 mRNA levels were unaffected by Na intake or CD ET-1 KO. KO mice on a normal or high-Na diet had elevated blood pressure compared with controls; this difference was not altered by indomethacin or NS-398 treatment. However, indomethacin or NS-398 did increase urine osmolality and reduce urine volume in KO, but not control, animals. In summary, IMCD COX-2-dependent PGE2 production is increased in CD ET-1 KO mice, indicating that CD-derived ET-1 is not a primary regulator of IMCD PGE2. Furthermore, the increased PGE2 in CD ET-1 KO mice partly compensates for loss of ET-1 with respect to maintaining urinary water excretion, but not in blood pressure control.


1998 ◽  
Vol 274 (3) ◽  
pp. F481-F489 ◽  
Author(s):  
Tianxin Yang ◽  
Inderjit Singh ◽  
Hang Pham ◽  
Daqing Sun ◽  
Ann Smart ◽  
...  

The present studies were undertaken to determine the effect of dietary salt intake on the renal expression of cyclooxygenase-1 (COX-1) and -2 (COX-2). Protein levels were assessed by Western blotting, and mRNA expression was assessed by reverse transcription-polymerase chain reaction (RT-PCR) on cDNA prepared from kidney regions, dissected nephron segments, and cultured renal cells. Both isoforms were expressed at high levels in inner medulla (IM), with low levels detected in outer medulla and cortex. COX-1 mRNA was present in the glomerulus and all along the collecting duct, whereas COX-2 mRNA was restricted to the macula densa-containing segment (MD), cortical thick ascending limb (CTAL), and, at significantly lower levels, in the inner medullary collecting duct. Both isoforms were highly expressed at high levels in cultured medullary interstitial cells and at lower levels in primary mesangial cells and collecting duct cell lines. Maintaining rats on a low- or high-NaCl diet for 1 wk did not affect expression of COX-1. In IM of rats treated with a high-salt diet, COX-2 mRNA increased 4.5-fold, and protein levels increased 9.5-fold. In contrast, cortical COX-2 mRNA levels decreased 2.9-fold in rats on a high-salt diet and increased 3.3-fold in rats on a low-salt diet. A low-salt diet increased COX-2 mRNA 7.7-fold in MD and 3.3-fold in CTAL. Divergent regulation of COX-2 in cortex and medulla by dietary salt suggests that prostaglandins in different kidney regions serve different functions, with medullary production playing a role in promoting the excretion of salt and water in volume overload, whereas cortical prostaglandins may protect glomerular circulation in volume depletion.


2018 ◽  
Vol 314 (2) ◽  
pp. C242-C253 ◽  
Author(s):  
Mazène Hochane ◽  
Denis Raison ◽  
Catherine Coquard ◽  
Claire Béraud ◽  
Audrey Bethry ◽  
...  

Injury of mesangial cells (MC) is a prominent feature of glomerulonephritis. Activated MC secrete inflammatory mediators that induce cell apoptosis. Parathyroid hormone-related peptide (PTHrP) is a locally active cytokine that enhances cell survival and is upregulated by proinflammatory factors in many cell types. The aim of this study was to analyze the regulation of PTHrP expression by inflammatory cytokines and to evaluate whether PTHrP itself acts as a proinflammatory and/or survival factor on male murine MC in primary culture. Our results showed that IL-1β (10 ng/ml) and TNF-α (10 ng/ml) rapidly and transiently upregulated PTHrP expression in MC. The effects of IL-1β were both transcriptional and posttranscriptional, with stabilization of the PTHrP mRNA by human antigen R (HuR). Proteome profiler arrays showed that PTHrP itself enhanced cytokines within 2 h in cell lysates, mainly IL-17, IL-16, IL-1α, and IL-6. PTHrP also stimulated sustained expression (2–4 h) of chemokines, mainly regulated upon activation normal T cell expressed and secreted (RANTES)/C-C motif chemokine 5 (CCL5) and macrophage inflammatory protein-2 (MIP-2)/C-X-C motif chemokine 2 (CXCL2), thymus and activation-regulated chemokine (TARC)/CCL17, and interferon-inducible T cell α-chemoattractant (I-TAC)/CXCL11. Moreover, PTHrP markedly enhanced cyclooxygenase-2 (COX-2) expression and elicited its autoinduction through the activation of the NF-κB pathway. PTHrP induced MC survival via the COX-2 products, and PTHrP overexpression in MC blunted the apoptotic effects of IL-1β and TNF-α. Altogether, these findings suggest that PTHrP functions as a booster of glomerular inflammatory processes and may be a negative feedback loop preserving MC survival.


Author(s):  
Friederike Kessel ◽  
Anne Steglich ◽  
Linda Hickmann ◽  
Ricardo Lira-Martinez ◽  
Michael Gerlach ◽  
...  

Developmentally heterogeneous renin expressing cells serve as progenitors for mural, glomerular and tubular cells during nephrogenesis and are collectively termed renin lineage cells (RLCs). In this study, we quantified different renal vascular and tubular cell types based on specific markers, assessed proliferation, and de-novo differentiation in the RLC population. We used kidney sections of mRenCre-mT/mG mice throughout nephrogenesis. Marker positivity was evaluated in whole digitalized sections. At embryonic day 16, RLCs appeared in the developing kidney, and expression of all stained markers in RLCs was observed. The proliferation rate of RLCs did not differ from the proliferation rate of non-RLCs. The RLCs expanded mainly by de-novo differentiation (neogenesis). The fractions of RLCs originating from the stromal progenitors of the metanephric mesenchyme (renin producing cells, vascular smooth muscle cells, mesangial cells) decreased during nephrogenesis. In contrast, aquaporin 2 positive RLCs in the collecting duct system that embryonically emerges almost exclusively from the ureteric bud, expanded postpartum. The cubilin positive RLC fraction in the proximal tubule, deriving from the cap mesenchyme, remained constant. During nephrogenesis, RLCs were continuously detectable in the vascular and tubular compartments of the kidney. Therein, various patterns of RLC differentiation that depend on the embryonic origin of the cells were identified.


2012 ◽  
Vol 302 (11) ◽  
pp. F1430-F1439 ◽  
Author(s):  
Line Nilsson ◽  
Kirsten Madsen ◽  
Sukru Oguzkan Topcu ◽  
Boye L. Jensen ◽  
Jørgen Frøkiær ◽  
...  

Bilateral ureteral obstruction (BUO) in rats is associated with increased cyclooxygenase type 2 (COX-2) expression, and selective COX-2 inhibition prevents downregulation of aquaporins (AQPs) in response to BUO. It was hypothesized that a murine model would display similar changes in renal COX-2 and AQPs upon BUO and that targeted disruption of COX-2 protects against BUO-induced suppression of collecting duct AQPs. COX-2−/− and wild-type littermates (C57BL/6) were employed to determine COX-1, -2, AQP2, and AQP3 protein abundances and localization after BUO. In a separate series, sham and BUO wild-type mice were treated with a selective COX-2 inhibitor, parecoxib. The COX-2 protein level increased in wild-type mice in response to BUO and was not detectable in COX-2−/−. COX-1 protein abundance was increased in sham-operated and BUO mice. Total AQP2 and -3 mRNA and protein levels decreased significantly after BUO in the cortex+outer medulla (C+OM) and inner medulla (IM). The decrease in C+OM AQP2 and -3 levels was attenuated/prevented in COX-2−/− mice, whereas there was no change in the IM. In parallel, inhibition of COX-2 by parecoxib rescued C+OM AQP3 and IM AQP2 protein level in wild-type mice subjected to BUO. In summary, 1) In C57BL/6 mice, ureteral obstruction increases renal COX-2 expression in interstitial cells and lowers AQP2/-3 abundance and 2) inhibition of COX-2 activity by targeted disruption or pharmacological blockade attenuates obstruction-induced AQP downregulation. In conclusion, COX-2-derived prostaglandins contribute to downregulation of transcellular water transporters in the collecting duct and likely to postobstruction diureses in the mouse.


2008 ◽  
Vol 294 (6) ◽  
pp. H2444-H2455 ◽  
Author(s):  
Min Li ◽  
Lih Kuo ◽  
John N. Stallone

Estrogen potentiates vascular reactivity to vasopressin (VP) by enhancing constrictor prostanoid function. To determine the cellular and molecular mechanisms, the effects of estrogen on arachidonic acid metabolism and on the expression of constrictor prostanoid pathway enzymes and endoperoxide/thromboxane receptor (TP) were determined in the female rat aorta. The release of thromboxane A2 (TxA2) and prostacyclin (PGI2) was measured in male (M), intact-female (Int-F), ovariectomized-female (OvX-F), and OvX + 17β-estradiol-replaced female (OvX + ER-F) rats. The expression of mRNA for cyclooxygenase (COX)-1, COX-2, thromboxane synthase (TxS), and TP by aortic endothelium (Endo) and vascular smooth muscle (VSM) of these four experimental groups was measured by RT-PCR. The expression of COX-1, COX-2, and TxS proteins by Endo and VSM was also estimated by immunohistochemistry (IHC). Basal release of TxA2 and PGI2 was similar in M (18.8 ± 1.9 and 1,723 ± 153 pg/mg ring wt/45 min, respectively) and Int-F (20.2 ± 4.2 and 1,488 ± 123 pg, respectively) rat aortas. VP stimulated the dose-dependent release of TxA2 and PGI2 from both male and female rat aorta. OvX markedly attenuated and ER therapy restored VP-stimulated release of TxA2 and PGI2 in female rats. No differences in COX-1 mRNA levels were detected in either Endo or VSM of the four experimental groups ( P > 0.1). The expression of both COX-2 and TxS mRNA were significantly higher ( P < 0.05) in both Endo and VSM of Int-F and OvX + ER-F, compared with M or OvX-F. Expression of TP mRNA was significantly higher in VSM of Int-F and OvX + ER-F compared with M or OvX-F. IHC revealed the uniform staining of COX-1 in VSM of the four experimental groups, whereas staining of COX-2 and TxS was greater in Endo and VSM of Int-F and OvX + ER-F than in OvX-F or M rats. These data reveal that estrogen enhances constrictor prostanoid function in female rat aorta by upregulating the expression of COX-2 and TxS in both Endo and VSM and by upregulating the expression of TP in VSM.


1999 ◽  
Vol 277 (1) ◽  
pp. F10-F16 ◽  
Author(s):  
Tianxin Yang ◽  
Daqing Sun ◽  
Yuning G. Huang ◽  
Ann Smart ◽  
Josephine P. Briggs ◽  
...  

Induction of the inducible cyclooxygenase isoform COX-2 is likely to be an important mechanism for increased prostaglandin production in renal inflammation. We examined the effect of lipopolysaccharide (LPS) on regional renal COX-2 expression in the rat. In the inner medulla, LPS injection (4 mg/kg ip) induced a twofold and 2.5-fold increase in the levels of COX-2 mRNA and COX-2 protein, respectively. In contrast, COX-2 expression in the renal cortex was not significantly altered. COX-2 promoter transgenic mice were created using the 2.7-kb flanking region of the rat COX-2 gene. In these animals, LPS injection induced reporter gene expression predominately in the inner medulla. The LPS receptor CD14, usually regarded as a monocyte/macrophage-specific marker, was found to be abundantly expressed in the inner medulla and in dissected inner medullary collecting duct (IMCD) cells, suggesting that it may mediate medullary COX-2 induction. CD14 was present only at low levels in cortex and cortical segments, including glomeruli. In cultured cells, it was abundant in mouse IMCD (mIMCD-K2) cells and renal medullary interstitial cells, but largely undetectable in mesangial cells and M1 cells, a cell line derived from mouse cortical collecting ducts. In the mIMCD-K2 cell line, LPS significantly induced COX-2 mRNA expression, with concomitant induction of CD14. LPS-stimulated COX-2 expression was reduced by the addition of an anti-CD14 monoclonal antibody to the culture medium. These results demonstrate that LPS selectively stimulates COX-2 expression in the renal inner medulla through a CD14-dependent mechanism.


Sign in / Sign up

Export Citation Format

Share Document