scholarly journals The nephron (pro)renin receptor: function and significance

2016 ◽  
Vol 311 (6) ◽  
pp. F1145-F1148 ◽  
Author(s):  
Nirupama Ramkumar ◽  
Donald E. Kohan

The (pro)renin receptor (PRR) is a multifunctional protein that is part of the renin-angiotensin system and is an important accessory molecule for the vacuolar H+-ATPase. The PRR is widely expressed in the kidney with relatively high abundance in the distal nephron. Determining the physiological relevance of the PRR has been challenging due to early lethality in whole animal and cell-specific PRR knockout models. Recently, viable renal cell-specific PRR knockout mice have been developed; these studies suggest that PRR in the nephron can modulate renal function via angiotensin II (ANG II)-dependent and -independent cell signaling pathways. In this mini-review, we highlight new developments in nephron PRR function in health and in pathophysiological conditions.

2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Marie-Odile Guimond ◽  
Nicole Gallo-Payet

Angiotensin II (Ang II) is the main active product of the renin-angiotensin system (RAS), mediating its action via two major receptors, namely, the Ang II type 1 (AT1) receptor and the type 2 (AT2) receptor. Recent results also implicate several other members of the renin-angiotensin system in various aspects of brain functions. The first aim of this paper is to summarize the current state of knowledge regarding the properties and signaling of the AT2receptor, its expression in the brain, and its well-established effects. Secondly, we will highlight the potential role of the AT2receptor in cognitive function, neurological disorders and in the regulation of appetite and the possible link with development of metabolic disorders. The potential utility of novel nonpeptide selective AT2receptor ligands in clarifying potential roles of this receptor in physiology will also be discussed. If confirmed, these new pharmacological tools should help to improve impaired cognitive performance, not only through its action on brain microcirculation and inflammation, but also through more specific effects on neurons. However, the overall physiological relevance of the AT2receptor in the brain must also consider the Ang IV/AT4receptor.


2017 ◽  
Vol 312 (5) ◽  
pp. H968-H979 ◽  
Author(s):  
Neeru M. Sharma ◽  
Shyam S. Nandi ◽  
Hong Zheng ◽  
Paras K. Mishra ◽  
Kaushik P. Patel

An activated renin-angiotensin system (RAS) within the central nervous system has been implicated in sympathoexcitation during various disease conditions including congestive heart failure (CHF). In particular, activation of the RAS in the paraventricular nucleus (PVN) of the hypothalamus has been recognized to augment sympathoexcitation in CHF. We observed a 2.6-fold increase in angiotensinogen (AGT) in the PVN of CHF. To elucidate the molecular mechanism for increased expression of AGT, we performed in silico analysis of the 3′-untranslated region (3′-UTR) of AGT and found a potential binding site for microRNA (miR)-133a. We hypothesized that decreased miR-133a might contribute to increased AGT in the PVN of CHF rats. Overexpression of miR-133a in NG108 cells resulted in 1.4- and 1.5-fold decreases in AGT and angiotensin type II (ANG II) type 1 receptor (AT1R) mRNA levels, respectively. A luciferase reporter assay performed on NG108 cells confirmed miR-133a binding to the 3′-UTR of AGT. Consistent with these in vitro data, we observed a 1.9-fold decrease in miR-133a expression with a concomitant increase in AGT and AT1R expression within the PVN of CHF rats. Furthermore, restoring the levels of miR-133a within the PVN of CHF rats with viral transduction resulted in a significant reduction of AGT (1.4-fold) and AT1R (1.5-fold) levels with a concomitant decrease in basal renal sympathetic nerve activity (RSNA). Restoration of miR-133a also abrogated the enhanced RSNA responses to microinjected ANG II within the PVN of CHF rats. These results reveal a novel and potentially unique role for miR-133a in the regulation of ANG II within the PVN of CHF rats, which may potentially contribute to the commonly observed sympathoexcitation in CHF. NEW & NOTEWORTHY Angiotensinogen (AGT) expression is upregulated in the paraventricular nucleus of the hypothalamus through posttranscriptional mechanism interceded by microRNA-133a in heart failure. Understanding the mechanism of increased expression of AGT in pathological conditions leading to increased sympathoexcitation may provide the basis for the possible development of new therapeutic agents with enhanced specificity.


2016 ◽  
Vol 311 (2) ◽  
pp. H404-H414 ◽  
Author(s):  
Carlos M. Ferrario ◽  
Sarfaraz Ahmad ◽  
Jasmina Varagic ◽  
Che Ping Cheng ◽  
Leanne Groban ◽  
...  

Although it is well-known that excess renin angiotensin system (RAS) activity contributes to the pathophysiology of cardiac and vascular disease, tissue-based expression of RAS genes has given rise to the possibility that intracellularly produced angiotensin II (Ang II) may be a critical contributor to disease processes. An extended form of angiotensin I (Ang I), the dodecapeptide angiotensin-(1–12) [Ang-(1–12)], that generates Ang II directly from chymase, particularly in the human heart, reinforces the possibility that an alternative noncanonical renin independent pathway for Ang II formation may be important in explaining the mechanisms by which the hormone contributes to adverse cardiac and vascular remodeling. This review summarizes the work that has been done in evaluating the functional significance of Ang-(1–12) and how this substrate generated from angiotensinogen by a yet to be identified enzyme enhances knowledge about Ang II pathological actions.


2021 ◽  
Vol 135 (6) ◽  
pp. 725-730
Author(s):  
Alberto Javier Ramos

Abstract Epilepsy is a highly prevalent neurological disease and anti-epileptic drugs (AED) are almost the unique clinical treatment option. A disbalanced brain renin–angiotensin system (RAS) has been proposed in epilepsy and several reports have shown that angiotensin II (Ang II) receptor-1 (ATR1) activation is pro-inflammatory and pro-epileptogenic. In agreement, ATR1 blockage with the repurposed drug losartan has shown benefits in animal models of epilepsy. Processing of Ang II by ACE2 enzyme renders Ang-(1-7), a metabolite that activates the mitochondrial assembly (Mas) receptor (MasR) pathway. MasR activation presents beneficial effects, facilitating vasodilatation, increasing anti-inflammatory and antioxidative responses. In a recent paper published in Clinical Science, Gomes and colleagues (Clin. Sci. (Lond.) (2020) 134, 2263–2277) performed intracerebroventricular (icv) infusion of Ang-(1-7) in animals subjected to the pilocarpine model of epilepsy, starting after the first spontaneous motor seizure (SMS). They showed that this approach reduced the frequency of SMS, restored animal anxiety, increased exploration, and augmented the hippocampal expression of protective catalase enzyme and antiapoptotic protein B-cell lymphoma 2 (Bcl-2). Interestingly, but surprisingly, Gomes and colleagues showed that MasR expression and mTor activity were reduced in the hippocampus of the epileptic Ang-(1-7) treated animals. These results show that Ang-(1-7) administration could represent a new avenue for developing strategies for the management of epilepsy in clinical settings. However, future work is necessary to evaluate the levels of RAS metabolites and the activity of key enzymes in these experimental interventions to completely understand the therapeutic potential of the brain RAS manipulation in epilepsy.


2017 ◽  
Vol 46 ◽  
pp. 1-8 ◽  
Author(s):  
Ehab Farag ◽  
Daniel I. Sessler ◽  
Zeyd Ebrahim ◽  
Andrea Kurz ◽  
Joseph Morgan ◽  
...  

1985 ◽  
Vol 248 (3) ◽  
pp. R371-R377 ◽  
Author(s):  
B. S. Huang ◽  
M. J. Kluger ◽  
R. L. Malvin

The thermoregulatory role of brain angiotensin II (ANG II) was tested by intracerebroventricular (IVT) infusion of ANG II or the converting enzyme inhibitor SQ 20881 (SQ) in 15 conscious sheep. Deep body temperature decreased 0.30 +/- 0.07 degree C (SE) during the 3-h period of IVT ANG II (25 ng/min) infusion (P less than 0.05) and increased 0.50 +/- 0.13 degree C during IVT SQ (1 microgram/min) infusion (P less than 0.01). To determine whether the rise in body temperature after IVT SQ infusion might be the result of a central renin-angiotensin system (RAS), SQ was infused IVT in five conscious sheep 20 h after bilateral nephrectomy. This resulted in a significant rise in body temperature of 0.28 +/- 0.05 degree C (P less than 0.05). When vasopressin antidiuretic hormone (ADH) was infused intravenously at the same time of IVT SQ infusion, the rise in temperature was depressed, but ADH did not lower the temperature below basal. IVT dopamine (20 micrograms/min) increased body temperature by 0.40 +/- 0.04 degree C (P less than 0.01), which was qualitatively similar to the result with IVT SQ. These data support the hypothesis that endogenous brain ANG II may play a role in thermoregulation. Furthermore, plasma ADH level, regulated in part by brain ANG II, is probably not the mediator of that thermoregulation. The similar effects of IVT dopamine and SQ on body temperature strengthen the hypothesis that dopamine may be involved in the central action of brain ANG II.


Author(s):  
Jieqiong Wang ◽  
Huiying Zhao ◽  
Youzhong An

Angiotensin converting enzyme 2 (ACE2), a transmembrane glycoprotein, is an important part of the renin-angiotensin system (RAS). In the COVID-19 epidemic, it was found to be the receptor of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2). ACE2 maintains homeostasis by inhibiting the Ang II-AT1R axis and activating the Ang I (1-7)-MasR axis, protecting against lung, heart and kidney injury. In addition, ACE2 helps transport amino acids across the membrane. ACE2 sheds from the membrane, producing soluble ACE2 (sACE2). Previous studies have pointed out that sACE2 plays a role in the pathology of the disease, but the underlying mechanism is not yet clear. Recent studies have confirmed that sACE2 can also act as the receptor of SARS-COV-2, mediating viral entry into the cell and then spreading to the infective area. Elevated concentrations of sACE2 are more related to disease. Recombinant human ACE2, an exogenous soluble ACE2, can be used to supplement endogenous ACE2. It may represent a potent COVID-19 treatment in the future. However, the specific administration concentration needs to be further investigated.


2020 ◽  
Vol 71 (6) ◽  
pp. 307-311
Author(s):  
Sorin Ungurianu ◽  
Constantin Trus ◽  
Roxana-Rosmary Enciu

It is already known from a variety of previous reports that an independent brain renin�angiotensin system (RAS) exists, completely separated from the one in the periphery. This independent brain RAS has all the precursors and the enzymatic structures necessary for the generation of the angiotensin peptides. Thus, in the last few years various groups started focusing on the more central effects of less known angiotensins (e.g in comparison with Angiotensin (Ang) II), namely Ang III, Ang IV, Ang-(1�7) or Ang 5-8. One of these newly emerging angiotensins which has become an increased center of interest in many studies is Ang-(1-7), which is a heptapeptide previously described especially for its opposite effects to Ang II, in the peripheral vascular area, but also described for some opposite central functions vs. Ang II. These aspects are completed with the fact that it was recently suggested that the renin�angiotensin system could modulate the oxidative stress metabolism, and also it seems that the manifestations of Angiotensin-(1-7) on the basal oxidative stress status are contradictory, with a variety of reports describing controversial (e.g. both pro-oxidant and antioxidant actions) effects for this heptapeptide. Our results presented here are confirming a possible antioxidant effect of Ang-(1�7) administration on rat, as shown by the increased levels of antioxidant enzymes from the temporal lobe (superoxide dismutase and glutathione peroxidase) and decreased levels of malondialdehyde, as an important lipid peroxidation parameter.


2006 ◽  
Vol 290 (3) ◽  
pp. F710-F719 ◽  
Author(s):  
Max C. Liebau ◽  
D. Lang ◽  
J. Böhm ◽  
N. Endlich ◽  
Martin J. Bek ◽  
...  

Experimental and clinical studies impressively demonstrate that angiotensin-converting enzyme inhibitors (ACEI) and angiotensin receptor blockers (ARB) significantly reduce proteinuria and retard progression of glomerular disease. The underlying intraglomerular mechanisms are not yet fully elucidated. As podocyte injury constitutes a critical step in the pathogenesis of glomerular proteinuria, beneficial effects of ACEI and ARB may partially result from interference with a local renin-angiotensin system (RAS) in podocytes. The knowledge of expression and function of a local RAS in podocytes is limited. In this study, we demonstrate functional expression of key components of the RAS in differentiated human podocytes: podocytes express mRNA for angiotensinogen, renin, ACE type 1, and the AT1 and AT2 angiotensin receptor subtypes. In Western blot experiments and immunostainings, expression of the AT1 and AT2 receptor was demonstrated both in differentiated human podocytes and in human kidney cortex. ANG II induced a concentration-dependent increase in cytosolic Ca2+ concentration via AT1 receptors in differentiated human podocytes, whereas it did not increase cAMP. Furthermore, ANG II secretion was detected, which was blocked by neither the ACEI captopril nor the renin inhibitor remikiren nor the chymase inhibitor chymostatin. ANG II secretion of podocytes was not increased by mechanical stress. Finally, ANG II was found to increase staurosporine-induced apoptosis in podocytes. We speculate that ACEI and ARB exert their beneficial effects, in part, by interfering with a local RAS in podocytes. Further experiments are required to identify the underlying molecular mechanism(s) of podocyte protection.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Jorge F Giani ◽  
Tea Djandjoulia ◽  
Nicholas Fetcher ◽  
Sebastien Fuchs ◽  
Dale M Seth ◽  
...  

Introduction: The responses to chronic angiotensin (Ang) II infusions of gene-targeted mice lacking kidney angiotensin-converting enzyme (ACE), in terms of intrarenal Ang II accumulation, hypertension, sodium and water retention are all blunted or absent. The objective of this study was to determine if these reduced responses were associated with changes in the intrarenal renin-angiotensin system (RAS). METHODS: Mice lacking intrarenal ACE (ACE10/10) were generated by targeted homologous recombination placing the expression of ACE only in macrophages. As a result, these mice have normal circulating ACE levels, but no kidney ACE. Wild-type (WT) mice of the same background (C57Bl/J) served as controls. Mice were subjected to sham-operation or subcutaneous infusion of Ang II for two weeks (n=6-10, 400 ng/kg/min via osmotic minipump). Mean arterial pressure (MAP) was followed by telemetry. At the end of the experiment, the kidneys were collected for analysis. Ang II content was measured by RIA. Renal abundance of ACE, angiotensinogen (AGT) and Ang II receptor type 1 (AT1R) were determined by Western Blot in total kidney homogenates. Results: At baseline, the MAP of WT and ACE 10/10 mice was similar 110 ± 4 mmHg vs. 109 ± 3 mmHg respectively (p>0.05). However, when subjected to chronic Ang II infusions, the hypertensive response was blunted in ACE 10/10 mice (129 ± 6 mmHg) vs. WT (146 ± 5 mmHg; P<0.05). Also, intrarenal Ang II accumulation was lower in ACE10/10 mice (724 ± 81 fmol/g) vs. WT (1130 ± 105 fmol/g, p<0.05). In non-treated mice, intrarenal RAS components analysis revealed that the absence of ACE in ACE10/10 mice was accompanied by a significant reduction in AGT (0.41 ± 0.06) and increased AT1R expression (1.32 ± 0.05) when compared to WT (normalized to 1.00, p<0.05 in both instances). Importantly, after chronic Ang II infusions, AGT, ACE and AT1R expression increased in WT (1.36, 1.26 and 1.17 fold increase respectively compared to non-treated WT, p<0.05) but not in the ACE10/10 mice (1.19, 1.06, 0.89 fold increase respectively compared to non-treated ACE10/10, p>0.05). Conclusion: The blunted hypertension and Ang II accumulation of mice devoid of kidney ACE in response to Ang II infusions is associated with a failed induction of renal AGT and the AT1R.


Sign in / Sign up

Export Citation Format

Share Document