Profiles of water and solute transport along long-loop descending limb: analysis by mathematical model

1987 ◽  
Vol 252 (3) ◽  
pp. F393-F402 ◽  
Author(s):  
J. Taniguchi ◽  
K. Tabei ◽  
M. Imai

We simulated profiles of water and solute transport along the descending limb of the long-loop nephron by a mathematical model based on mass balance equations for water, sodium, potassium, and urea, using phenomenological coefficients reported for hamsters. We assumed that interstitial concentration of sodium, potassium, and urea increased linearly along the descending limb from 150 to 350, from 5 to 50, and from 5 to 300 mM, respectively. Under this condition an increase in osmolality at the end-descending limb was mainly accounted for by the absorption of water. Considerable amounts of potassium and urea were secreted along the descending limb. Sodium was reabsorbed rather than secreted along the descending limb by both diffusion and solvent drag. The secreted amounts of urea and potassium were comparable to those observed by micropuncture studies. The sodium concentration in the lumen was higher than in the interstitium, with the transmural sodium gradient being 15 meq/liter at the hairpin turn. The potassium mass flow rate at the end-descending limb increased by 2.4 times. Large variations in potassium concentration of the delivered fluid scarcely changed the potassium mass flow rate at the end-descending limb. The secretion of urea and potassium and the reabsorption of sodium were increased as a function of delivered flow rate. An increase in corticomedullary urea gradient decreased the net potassium secretion along the descending limb. When the transport parameters for rabbits were used, both reabsorption of sodium and addition of urea were decreased, but a similar amount of potassium was secreted. These analyses indicate that the mathematical model that takes the species difference and internephron heterogeneity into consideration is useful in illustrating the transport processes along the descending limb of Henle's loop under various physiological and pathophysiological conditions.

2010 ◽  
Vol 97-101 ◽  
pp. 2300-2305
Author(s):  
Hong Jiang Cui ◽  
Pei Ting Sun ◽  
Ming Hai Li

Air gap membrane distillation experiments of different temperature and mass flow rate of working fluid were done for the use of solar power and setting up the mathematical model of AGMD’ heat and mass transfer. The calculation correctness of mathematical model was discussed and the thermal efficiency of membrane distillation system was calculated. The results showed that the experimental flux of membrane distillation reached 49kg/m2•h and the biggest relative error is less than 9% between results of experiment and mathematical model calculation. The mathematical model can be used to forecast the process parameters of membrane distillation. The highest thermal efficiency of this system is 68% and the main influencing factors of thermal efficiency are temperature and mass flow rate of working fluid.


Author(s):  
Oleg V. Zhiliaev ◽  
◽  
Vladislav N. Kovalnogov ◽  

This paper gives the preliminary analysis of a new physical method of measuring the fluid’s mass flow rate and density which has been discovered by other authors. The need for exploration and development of the method is defined by its advantages in comparison with other currently existing systems for mass flow rate measuring such as Coriolis flowmeter. The new physical method under consideration is based on measuring the alternating pressure difference which would occur along the flow due to harmonic oscillations of the cross-section area of the pipeline which has flexible walls. It is shown that the new physical method gives the opportunity of simultaneous measurement of mass flow rate and liquid’s density. A mathematical model of the process of non-stationary flow of a liquid is built. The problem of non-stationary flow of a liquid is considered and solved as to be one-dimensioned one. The detailed and thorough derivation of the formulae of the mathematical model is performed. Some inaccuracies in formulae permitted by authors of the method are indicated at. The limitations in applicability of the method which had been indicated at by its authors are also essentially weaken. The theoretical examination and approval of conclusions about the applicability of the new method are made.


2020 ◽  
pp. 104-104
Author(s):  
Zoltan Pek ◽  
Arpad Nyers ◽  
Jozsef Nyers

The paper presents the energy optimization of the cold water loop of the heat pump heating system using analytical-numerical procedure. The aim of the study is obtain the maximum COP of the heating system by optimum of the wall water mass flow rate and well pump power. The objective function is the heating system's coefficient of performance (COP). All components of the heating system: evaporator, condenser, compressor, circulation pump and well pump are described by steady-state, lumped mathematical model. The model?s equations are coupled, non-linear, multivariable and algebraic the solution is feasible using an iterative numerical method. Matlab?s program with Gauss elimination and Newton linearization method is applied for solving the model. The obtained numerical data are presented in 3D graphics. The optimum value of the cold-well water mass flow rate is obtained from the graphics or by using a selection algorithm. The results of the study are the adequate mathematical model for energy optimization of the heating system, the numerical algorithm for solving the model and the ultimate goal to obtain the optimum of the power of well pump and compressor.


2021 ◽  
Vol 13 (6) ◽  
pp. 3464
Author(s):  
Hélio A. G. Diniz ◽  
Tiago F. Paulino ◽  
Juan J. G. Pabon ◽  
Antônio A. T. Maia ◽  
Raphael N. Oliveira

This paper presents a distributed mathematical model for a carbon dioxide direct expansion solar-assisted heat pump used to heat bath water. The main components are a gas cooler, a needle valve, an evaporator/collector, and a compressor. To develop the heat exchange models, mass, energy, and momentum balances were used. The model was validated for transient as well as steady state conditions using experimental data. A reasonably good agreement was observed between the predicted temperatures and experimental data. The simulations showed that the time step required to demonstrate the behavior of the heat pump in the transient regime is greater than the time step required for the steady state. The results obtained with the mathematical model revealed that a reduction in the water mass flow rate results in an increase in the water outlet temperature. In addition, when the carbon dioxide mass flow rate is reduced, the compressor inlet and outlet temperatures increase as well as the water outlet temperature.


Vestnik IGEU ◽  
2021 ◽  
pp. 19-26
Author(s):  
A.M. Samoilov ◽  
A.A. Sataev ◽  
A.A. Blokhin ◽  
V.V. Ivanov

Safety is the key requirement to any nuclear power installation. Various factors affect safety during operation of the nuclear power installation. These factors are difficult to study due to the high economic costs. This problem can be solved by developing prototype models to conduct the research of many complex processes. Dynamic impact on the ship installation is one of these processes. The most significant impact is the impact on the natural circulation of the coolant, that is one of the basic emergency safety systems. Also, it is a promising way to ensure movement in the main circulation circuit. The purpose of this paper is to assess the influence of external dynamic forces on the processes of natural circulation. For the study a testing bench has been developed that simulates one of the circulation loops of the reactor unit. The basic method to obtain experimental data is temperature sounding of the specific sections of the circulation route. A mathematical model has been developed that describes this process. The model is based on the equations of momentum conservation and heat balance. In accordance with the experimental data, the calculation of natural circulation for static and dynamic modes has been carried out. A mathematical model to describe this process has been developed. A comparative analysis of the results of calculating the static and dynamic modes has been carried out. It is founded out that the decrease of mass flow rate is about 10 % as compared with the static regime. It confirms the qualitative effect of ship motion on natural circulation. The practical significance of the research is the development of a model under conditions of ship motion, as well as verification of the model at the testing bench. The results show a significant effect of ship motion on the mass flow rate of the coolant in the case of natural circulation. Thus, to ensure the required safety of ship installations, it is recommended to conduct a study of natural circulation in accordance with the developed model under conditions of maximum possible ship motion.


Author(s):  
Matteo Greco ◽  
Roberta Ferri ◽  
Andrea Achilli ◽  
Stefano Gandolfi ◽  
Cinzia Congiu ◽  
...  

The measurement of two-phase flow parameters has never been an easy task in the experimental thermal-hydraulics and the need of such measurements in the SPES3 facility has led to investigation of different possibilities and evaluation methods to determine mass flows and energies. This paper deals with the theoretical prediction of the two-phase mass flow rate by the development of a mathematical model for a spool piece, consisting of a drag disk, a turbine and a void fraction detector. Data obtained by simulation of DBAs in the SPES3 facility, with the RELAP5 thermal-hydraulic code, have provided the reference conditions for defining the main thermal-hydraulic parameter ranges and selecting a set of instruments potentially suitable to measure and derive the required quantities. The governing equation and the instrumentation output are defined for each device. Three different turbine models (Aya, Rouhani and volumetric) have been studied to understand which one better adapts to two-phase flow conditions and to investigate the best instrument combination. The mathematical model has been tested versus the RELAP5 results with a reverse process where calculated variables, like void fraction, quality and slip ratio, are given as input to a specifically developed program to get back the mass flow rate. The analytical results, verified versus the DVI break transient, well agree with the RELAP5 mass flow rate. Specific tests on proper experimental loops are required to verify the analytical studies.


Author(s):  
V.N. Petrov ◽  
◽  
V.F. Sopin ◽  
L.A. Akhmetzyanova ◽  
Ya.S. Petrova ◽  
...  

Author(s):  
Roberto Bruno Bossio ◽  
Vincenzo Naso ◽  
Marian Cichy ◽  
Boleslaw Pleszewski
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document