Experimental and Theoretic Research on Solar Power Membrane Distillation

2010 ◽  
Vol 97-101 ◽  
pp. 2300-2305
Author(s):  
Hong Jiang Cui ◽  
Pei Ting Sun ◽  
Ming Hai Li

Air gap membrane distillation experiments of different temperature and mass flow rate of working fluid were done for the use of solar power and setting up the mathematical model of AGMD’ heat and mass transfer. The calculation correctness of mathematical model was discussed and the thermal efficiency of membrane distillation system was calculated. The results showed that the experimental flux of membrane distillation reached 49kg/m2•h and the biggest relative error is less than 9% between results of experiment and mathematical model calculation. The mathematical model can be used to forecast the process parameters of membrane distillation. The highest thermal efficiency of this system is 68% and the main influencing factors of thermal efficiency are temperature and mass flow rate of working fluid.

2012 ◽  
Vol 581-582 ◽  
pp. 89-93
Author(s):  
Ying Guan ◽  
Hong Jiang Cui

Air gap membrane distillation (AGMD) experiments were done to reseach flux of membrane distillation at different working fluid temperature and mass flow rate. The driving power of distillation experiments is solar power. The experimental flux of membrane distillation reached 49kg/m2•h. The mathematical model of AGMD’ heat and mass transfer was set up. The biggest relative error is less than 9% between results of experiment and mathematical model calculation. The mathematical model can be used to forecast the distillation flux and the thermal efficiency.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Hannah R. Doran ◽  
Theo Renaud ◽  
Gioia Falcone ◽  
Lehua Pan ◽  
Patrick G. Verdin

AbstractAlternative (unconventional) deep geothermal designs are needed to provide a secure and efficient geothermal energy supply. An in-depth sensitivity analysis was investigated considering a deep borehole closed-loop heat exchanger (DBHE) to overcome the current limitations of deep EGS. A T2Well/EOS1 model previously calibrated on an experimental DBHE in Hawaii was adapted to the current NWG 55-29 well at the Newberry volcano site in Central Oregon. A sensitivity analysis was carried out, including parameters such as the working fluid mass flow rate, the casing and cement thermal properties, and the wellbore radii dimensions. The results conclude the highest energy flow rate to be 1.5 MW, after an annulus radii increase and an imposed mass flow rate of 5 kg/s. At 3 kg/s, the DBHE yielded an energy flow rate a factor of 3.5 lower than the NWG 55-29 conventional design. Despite this loss, the sensitivity analysis allows an assessment of the key thermodynamics within the wellbore and provides a valuable insight into how heat is lost/gained throughout the system. This analysis was performed under the assumption of subcritical conditions, and could aid the development of unconventional designs within future EGS work like the Newberry Deep Drilling Project (NDDP). Requirements for further software development are briefly discussed, which would facilitate the modelling of unconventional geothermal wells in supercritical systems to support EGS projects that could extend to deeper depths.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2950
Author(s):  
Vinod Kumar ◽  
Liqiang Duan

Coal consumption and CO2 emissions are the major concerns of the 21st century. Solar aided (coal-fired) power generation (SAPG) is paid more and more attention globally, due to the lesser coal rate and initial cost than the original coal-fired power plant and CSP technology respectively. In this paper, the off-design dynamic performance simulation model of a solar aided coal-fired power plant is established. A 330 MW subcritical coal-fired power plant is taken as a case study. On a typical day, three various collector area solar fields are integrated into the coal-fired power plant. By introducing the solar heat, the variations of system performances are analyzed at design load, 75% load, and 50% load. Analyzed parameters with the change of DNI include the thermal oil mass flow rate, the mass flow rate of feed water heated by the solar energy, steam extraction mass flow rate, coal consumption, and the plant thermal efficiency. The research results show that, as DNI increases over a day, the coal saving rate will also increase, the maximum coal saving rate reaches up to 5%, and plant thermal efficiency reaches 40%. It is analyzed that the SAPG system gives the best performance at a lower load and a large aperture area.


2018 ◽  
Vol 22 (1 Part B) ◽  
pp. 487-494 ◽  
Author(s):  
Aminreza Noghrehabadi ◽  
Ebrahim Hajidavaloo ◽  
Mojtaba Moravej ◽  
Ali Esmailinasab

Solar collectors are the key part of solar water heating systems. The most widely produced solar collectors are flat plate solar collectors. In the present study, two types of flat plate collectors, namely square and rhombic collectors are experi?mentally tested and compared and the thermal performance of both collectors is investigated. The results show both collectors have the same performance around noon (?61%), but the rhombic collector has better performance in the morning and afternoon. The values for rhombic and square collectors are approximately 56.2% and 53.5% in the morning and 56.1% and 54% in the afternoon, respectively. The effect of flow rate is also studied. The thermal efficiency of rhombic and square flat plate collectors increases in proportion to the flow rate. The results indicated the rhombic collector had better performance in comparison with the square collector with respect to the mass-flow rate.


In this investigation of multi heat pipe induced in heat exchanger shows the developments in heat transfer is to improve the efficiency of heat exchangers. Water is used as a heat transfer fluid and acetone is used as a working fluid. Rotameter is set to measure the flow rate of cold water and hot water. To maintain the parameter as experimental setup. Then set the mass flow rate of hot water as 40 LPH, 60LPH, 80 LPH, 100LPH, 120 LPH and mass flow rate of cold water as 20 LPH, 30 LPH, 40 LPH, 50 LPH, and 60 LPH. Then 40 C, 45 ºC, 50 ºC, 55 C, 60 ºC are the temperatures of hot water at inlet are maintained. To find some various physical parameters of Qc , hc , Re ,, Pr , Rth. The maximum effectiveness of the investigation obtained from condition of Thi 60 C, Tci 32 C and 100 LPH mhi, 60 LPH mci the maximum effectiveness attained as 57.25. Then the mhi as 100 LPH, mci as 60 LPH and Thi at 40 C as 37.6%. It shows the effectiveness get increased about 34.3 to the maximum conditions.


Author(s):  
Milad Kelidari ◽  
Ali Jabari Moghadam

Different-radius of curvature pipes are experimentally investigated using distilled water and Fe3O4–water nanofluid with two different values of the nanoparticle volume fraction as the working fluids. The mass flow rate is approximately varied from 0.2 to 0.7 kg/min (in the range of laminar flow); the wall heat flux is nearly kept constant. The experimental results reveal that utilizing the nanofluid increases the convection heat transfer coefficient and Nusselt number in comparison to water; these outcomes are also observed when the radius of curvature is decreased and/or the mass flow rate is increased (equivalently, a rise in Dean number). The resultant pressure gradient is, however, intensified by an increase in the volume concentration of nanoparticles and/or by a rise in Dean number. For any particular working fluid, there is an optimum mass flow rate, which maximizes the system efficiency. The overall efficiency can be introduced to include hydrodynamic as well as thermal characteristics of nanofluids in various geometrical conditions. For each radius of curvature, the same overall efficiency may be achieved for two magnitudes of nanofluid volume concentration.


Micromachines ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 758
Author(s):  
Zhi-xin Gao ◽  
Ping Liu ◽  
Yang Yue ◽  
Jun-ye Li ◽  
Hui Wu

Although check valves have attracted a lot of attention, work has rarely been completed done when there is a compressible working fluid. In this paper, the swing check valve and the tilting check valve flowing high-temperature compressible water vapor are compared. The maximum Mach number under small valve openings, the dynamic opening time, and the hydrodynamic moment acting on the valve disc are chosen to evaluate the difference between the two types of check valves. Results show that the maximum Mach number increases with the decrease in the valve opening and the increase in the mass flow rate, and the Mach number and the pressure difference in the tilting check valve are higher. In the swing check valve, the hydrodynamic moment is higher and the valve opening time is shorter. Furthermore, the valve disc is more stable for the swing check valve, and there is a periodical oscillation of the valve disc in the tilting check valve under a small mass flow rate.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Clifford K. Ho ◽  
Joshua M. Christian ◽  
Julius E. Yellowhair ◽  
Kenneth Armijo ◽  
William J. Kolb ◽  
...  

This paper evaluates the on-sun performance of a 1 MW falling particle receiver. Two particle receiver designs were investigated: obstructed flow particle receiver versus free-falling particle receiver. The intent of the tests was to investigate the impact of particle mass flow rate, irradiance, and particle temperature on the particle temperature rise and thermal efficiency of the receiver for each design. Results indicate that the obstructed flow design increased the residence time of the particles in the concentrated flux, thereby increasing the particle temperature and thermal efficiency for a given mass flow rate. The obstructions, a staggered array of chevron-shaped mesh structures, also provided more stability to the falling particles, which were prone to instabilities caused by convective currents in the free-fall design. Challenges encountered during the tests included nonuniform mass flow rates, wind impacts, and oxidation/deterioration of the mesh structures. Alternative materials, designs, and methods are presented to overcome these challenges.


Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 323 ◽  
Author(s):  
Jojomon Joseph ◽  
Danish Rehman ◽  
Michel Delanaye ◽  
Gian Luca Morini ◽  
Rabia Nacereddine ◽  
...  

Miniaturized heat exchangers are well known for their superior heat transfer capabilities in comparison to macro-scale devices. While in standard microchannel systems the improved performance is provided by miniaturized distances and very small hydraulic diameters, another approach can also be followed, namely, the generation of local turbulences. Localized turbulence enhances the heat exchanger performance in any channel or tube, but also includes an increased pressure loss. Shifting the critical Reynolds number to a lower value by introducing perturbators controls pressure losses and improves thermal efficiency to a considerable extent. The objective of this paper is to investigate in detail collector performance based on reduced-order modelling and validate the numerical model based on experimental observations of flow maldistribution and pressure losses. Two different types of perturbators, Wire-net and S-shape, were analyzed. For the former, a metallic wire mesh was inserted in the flow passages (hot and cold gas flow) to ensure stiffness and enhance microchannel efficiency. The wire-net perturbators were replaced using an S-shaped perturbator model for a comparative study in the second case mentioned above. An optimum mass flow rate could be found when the thermal efficiency reaches a maximum. Investigation of collectors with different microchannel configurations (s-shaped, wire-net and plane channels) showed that mass flow rate deviation decreases with an increase in microchannel resistance. The recirculation zones in the cylindrical collectors also changed the maldistribution pattern. From experiments, it could be observed that microchannels with S-shaped perturbators shifted the onset of turbulent transition to lower Reynolds number values. Experimental studies on pressure losses showed that the pressure losses obtained from numerical studies were in good agreement with the experiments (<4%).


1987 ◽  
Vol 252 (3) ◽  
pp. F393-F402 ◽  
Author(s):  
J. Taniguchi ◽  
K. Tabei ◽  
M. Imai

We simulated profiles of water and solute transport along the descending limb of the long-loop nephron by a mathematical model based on mass balance equations for water, sodium, potassium, and urea, using phenomenological coefficients reported for hamsters. We assumed that interstitial concentration of sodium, potassium, and urea increased linearly along the descending limb from 150 to 350, from 5 to 50, and from 5 to 300 mM, respectively. Under this condition an increase in osmolality at the end-descending limb was mainly accounted for by the absorption of water. Considerable amounts of potassium and urea were secreted along the descending limb. Sodium was reabsorbed rather than secreted along the descending limb by both diffusion and solvent drag. The secreted amounts of urea and potassium were comparable to those observed by micropuncture studies. The sodium concentration in the lumen was higher than in the interstitium, with the transmural sodium gradient being 15 meq/liter at the hairpin turn. The potassium mass flow rate at the end-descending limb increased by 2.4 times. Large variations in potassium concentration of the delivered fluid scarcely changed the potassium mass flow rate at the end-descending limb. The secretion of urea and potassium and the reabsorption of sodium were increased as a function of delivered flow rate. An increase in corticomedullary urea gradient decreased the net potassium secretion along the descending limb. When the transport parameters for rabbits were used, both reabsorption of sodium and addition of urea were decreased, but a similar amount of potassium was secreted. These analyses indicate that the mathematical model that takes the species difference and internephron heterogeneity into consideration is useful in illustrating the transport processes along the descending limb of Henle's loop under various physiological and pathophysiological conditions.


Sign in / Sign up

Export Citation Format

Share Document