Electrolyte, urea, and water transport in a two-nephron central core model of the renal medulla

1989 ◽  
Vol 257 (3) ◽  
pp. F399-F413 ◽  
Author(s):  
J. L. Stephenson ◽  
Y. Zhang ◽  
R. Tewarson

A one-nephron model has been extended to include both short-looped and long-looped nephrons. Variables are volume flow, Na+, K+, Cl-, urea, hydrostatic pressure, and electric potential. The ratio of short-to-long-looped nephrons, one of the parameters of the model, is 5 to 1. With either rabbit or hamster permeability data from perfusion experiments, the model develops an osmolality of approximately 600 mosmol/l at the junction of inner and outer medulla but no osmolality gradient in the inner medulla. With the rabbit data, osmolalities in excess of 1,000 mosmol/l can be generated in the papilla with no active transport if urea permeabilities are less than 10(-5) cm/s; with the hamster data, electrolyte permeabilities must also be reduced. With these modified parameters, urea concentrations are less in the long loops than has been found on micropuncture. These can be increased to experimental levels by increasing the urea permeability and decreasing the hydraulic permeability of thin descending limbs in the inner half of the inner medulla, but to maintain loop osmolality at 1,000 mosmol/l it is necessary to postulate active NaCl transport in thin ascending limbs in the outer half of the inner medulla. This gives an alternative mode of concentration without active transport in the inner half of the inner medulla, in which electrolytes diffuse out of and urea diffuses into both limbs of Henle's loop and mix in the core with urea and water entering from the collecting duct. Concentration in either mode requires significant modification of perfusion data.

2011 ◽  
Vol 301 (5) ◽  
pp. F979-F996 ◽  
Author(s):  
Aurélie Edwards ◽  
Anita T. Layton

We expanded our region-based model of water and solute exchanges in the rat outer medulla to incorporate the transport of nitric oxide (NO) and superoxide (O2−) and to examine the impact of NO-O2− interactions on medullary thick ascending limb (mTAL) NaCl reabsorption and oxygen (O2) consumption, under both physiological and pathological conditions. Our results suggest that NaCl transport and the concentrating capacity of the outer medulla are substantially modulated by basal levels of NO and O2−. Moreover, the effect of each solute on NaCl reabsorption cannot be considered in isolation, given the feedback loops resulting from three-way interactions between O2, NO, and O2−. Notwithstanding vasoactive effects, our model predicts that in the absence of O2−-mediated stimulation of NaCl active transport, the outer medullary concentrating capacity (evaluated as the collecting duct fluid osmolality at the outer-inner medullary junction) would be ∼40% lower. Conversely, without NO-induced inhibition of NaCl active transport, the outer medullary concentrating capacity would increase by ∼70%, but only if that anaerobic metabolism can provide up to half the maximal energy requirements of the outer medulla. The model suggests that in addition to scavenging NO, O2− modulates NO levels indirectly via its stimulation of mTAL metabolism, leading to reduction of O2 as a substrate for NO. When O2− levels are raised 10-fold, as in hypertensive animals, mTAL NaCl reabsorption is significantly enhanced, even as the inefficient use of O2 exacerbates hypoxia in the outer medulla. Conversely, an increase in tubular and vascular flows is predicted to substantially reduce mTAL NaCl reabsorption. In conclusion, our model suggests that the complex interactions between NO, O2−, and O2 significantly impact the O2 balance and NaCl reabsorption in the outer medulla.


2011 ◽  
Vol 300 (2) ◽  
pp. F356-F371 ◽  
Author(s):  
Anita T. Layton

A new, region-based mathematical model of the urine concentrating mechanism of the rat renal medulla was used to investigate the significance of transport and structural properties revealed in anatomic studies. The model simulates preferential interactions among tubules and vessels by representing concentric regions that are centered on a vascular bundle in the outer medulla (OM) and on a collecting duct cluster in the inner medulla (IM). Particularly noteworthy features of this model include highly urea-permeable and water-impermeable segments of the long descending limbs and highly urea-permeable ascending thin limbs. Indeed, this is the first detailed mathematical model of the rat urine concentrating mechanism that represents high long-loop urea permeabilities and that produces a substantial axial osmolality gradient in the IM. That axial osmolality gradient is attributable to the increasing urea concentration gradient. The model equations, which are based on conservation of solutes and water and on standard expressions for transmural transport, were solved to steady state. Model simulations predict that the interstitial NaCl and urea concentrations in adjoining regions differ substantially in the OM but not in the IM. In the OM, active NaCl transport from thick ascending limbs, at rates inferred from the physiological literature, resulted in a concentrating effect such that the intratubular fluid osmolality of the collecting duct increases ∼2.5 times along the OM. As a result of the separation of urea from NaCl and the subsequent mixing of that urea and NaCl in the interstitium and vasculature of the IM, collecting duct fluid osmolality further increases by a factor of ∼1.55 along the IM.


1980 ◽  
Vol 239 (6) ◽  
pp. F578-F588 ◽  
Author(s):  
J. V. Bonventre ◽  
C. Lechene

The inability to demonstrate adequate active transport in the ascending thin limb of the mammalian kidney has led to the development of models of concentration with only passive transport in the inner medullary loop of Henle. These models depend on very limited solute entry into the descending thin limb, an assumption counter to much of the experimental in vivo data. In addition, these models have not incorporated the vascular-tubular relationships in the renal medulla. We hypothesize that fluid enters the inner medulla in the descending thin limb slightly hyperosmotic to the fluid leaving the inner medulla in the interstitial-vasa recta compartment. We illustrate the hypothesis with a steady-state model of the medullary concentration process with no active transport in the inner medullary loop of Henle and with tubular permeability properties and solute concentrations consistent with experimental data. A difference of 33 mosmol/kg between descending thin limb and fluid leaving the inner medulla in the interstitial-vasa recta compartment results in an increase in formative urine osmolality from 530 mosmol/kg in the collecting duct at the outer-inner medullary boundary to 2,200 mosmol/kg in the ureteral urine. The hypothesis incorporates anatomical and physiological properties of the vascular and tubular structures in the outer medulla.


2003 ◽  
Vol 284 (5) ◽  
pp. R1219-R1230 ◽  
Author(s):  
Baozhi Yuan ◽  
Mingyu Liang ◽  
Zhizhang Yang ◽  
Elizabeth Rute ◽  
Norman Taylor ◽  
...  

The present study was designed to determine whether nonhypertensive elevations of plasma ANG II would modify the expression of genes involved in renal injury that could influence oxidative stress and extracellular matrix formation in the renal medulla using microarray, Northern, and Western blot techniques. Sprague-Dawley rats were infused intravenously with either ANG II (5 ng · kg−1 · min−1) or vehicle for 7 days ( n = 6/group). Mean arterial pressure averaged 110 ± 0.6 mmHg during the control period and 113 ± 0.4 mmHg after ANG II. The mRNA of 1,751 genes (∼80% of all currently known rat genes) that was differentially expressed (ANG II vs. saline) in renal outer and inner medulla was determined. The results of 12 hybridizations indicated that in response to ANG II, 11 genes were upregulated and 25 were downregulated in the outer medulla, while 11 were upregulated and 13 were downregulated in the inner medulla. These differentially expressed genes, most of which were not known previously to be affected by ANG II in the renal medulla, were found to group into eight physiological pathways known to influence renal injury and kidney function. Particularly, expression of several genes would be expected to increase oxidative stress and interstitial fibrosis in the outer medulla. Western blot analyses confirmed increased expression of transforming growth factor-β1 and collagen type IV proteins in the outer medulla. Results demonstrate that nonhypertensive elevations of plasma ANG II can significantly alter the expression of a variety of genes in the renal outer medulla and suggested the vulnerability of the renal outer medulla to the injurious effect of ANG II.


2007 ◽  
Vol 293 (1) ◽  
pp. F408-F415 ◽  
Author(s):  
Un Sil Jeon ◽  
Ki-Hwan Han ◽  
Soo-Hyun Park ◽  
Sang Do Lee ◽  
Mee Rie Sheen ◽  
...  

Hypokalemia causes a significant decrease in the tonicity of the renal medullary interstitium in association with reduced expression of sodium transporters in the distal tubule. We asked whether hypokalemia caused downregulation of the tonicity-responsive enhancer binding protein (TonEBP) transcriptional activator in the renal medulla due to the reduced tonicity. We found that the abundance of TonEBP decreased significantly in the outer and inner medullas of hypokalemic rats. Underlying mechanisms appeared different in the two regions because the abundance of TonEBP mRNA was lower in the outer medulla but unchanged in the inner medulla. Immunohistochemical examination of TonEBP revealed cell type-specific differences. TonEBP expression decreased dramatically in the outer and inner medullary collecting ducts, thick ascending limbs, and interstitial cells. In the descending and ascending thin limbs, TonEBP abundance decreased modestly. In the outer medulla, TonEBP shifted to the cytoplasm in the descending thin limbs. As expected, transcription of aldose reductase, a target of TonEBP, was decreased since the abundance of mRNA and protein was reduced. Downregulation of TonEBP appeared to have also contributed to reduced expression of aquaporin-2 and UT-A urea transporters in the renal medulla. In cultured cells, expression and activity of TonEBP were not affected by reduced potassium concentrations in the medium. These data support the view that medullary tonicity regulates expression and nuclear distribution of TonEBP in the renal medulla in cell type-specific manners.


2002 ◽  
Vol 283 (6) ◽  
pp. F1313-F1325 ◽  
Author(s):  
Weidong Wang ◽  
Chunling Li ◽  
Tae-Hwan Kwon ◽  
Mark A. Knepper ◽  
Jørgen Frøkiær ◽  
...  

The purpose of this study was to evaluate whether hypercalcemia is associated with downregulation of renal aquaporins (AQPs), including AQP1, AQP2, phosphorylated AQP2 (p-AQP2), AQP3, and AQP4, and if this is the case, to test whether cAMP-phosphodiesterase (PDE) inhibitor treatment can prevent AQP downregulation and prevent the development of polyuria. Vitamin D-induced hypercalcemia in rats was associated with increased urine output and reduced urine osmolality, consistent with previous findings (Levi M, Peterson L, and Berl T. Kidney Int 23: 489–497, 1983). Semiquantitative immunoblotting revealed a significant reduction in the abundance of inner medullary AQP2 (52 ± 6% of control levels), consistent with previous studies, and of AQP2, which is phosphorylated at the PKA phosphorylation consensus site serine 256 (p-AQP2; 36 ± 8%). Moreover, AQP3 abundance was also significantly decreased (45 ± 7 and 61 ± 6% of control levels in inner medulla and whole kidney, respectively). Consistent with this, immunohistochemistry demonstrated reduced AQP3 immunolabeling along the entire collecting duct. AQP4 expression was not reduced. Surprisingly, total kidney AQP1 abundance was also reduced (60 ± 6%). AQP1 expression was reduced in the cortex and outer stripe of the outer medulla (48 ± 7%; i.e., in proximal tubules). In contrast, AQP1 levels were not changed in the inner stripe of the outer medulla or in the inner medulla (i.e., descending thin limbs and vasa recta). Treatment with the cAMP-PDE inhibitors rolipram and milrinone in combination (inhibiting PDE IV and PDE III isoenzymes) at day 2 and onward completely prevented the hypercalcemia-induced downregulation of AQP2 and AQP3 (but not AQP1) and completely prevented the development of polyuria. In conclusion, AQP3, AQP2, and p-AQP2 are downregulated and are likely to play critical roles in the development of polyuria associated with vitamin D-induced hypercalcemia. Moreover, PDE inhibitor treatment significantly prevented the reduced expression of collecting duct AQPs and prevented the development of polyuria.


2005 ◽  
Vol 288 (6) ◽  
pp. C1390-C1401 ◽  
Author(s):  
Richard Bouley ◽  
Herbert Y. Lin ◽  
Malay K. Raychowdhury ◽  
Vladimir Marshansky ◽  
Dennis Brown ◽  
...  

Vasopressin (VP) increases urinary concentration by signaling through the vasopressin receptor (V2R) in collecting duct principal cells. After downregulation, V2R reappears at the cell surface via an unusually slow (several hours) “recycling” pathway. To examine this pathway, we expressed V2R-green fluorescent protein (GFP) in LLC-PK1a cells. V2R-GFP showed characteristics similar to those of wild-type V2R, including high affinity for VP and adenylyl cyclase stimulation. V2R-GFP was located mainly in the plasma membrane in unstimulated cells, but it colocalized with the lysosomal marker Lysotracker after VP-induced internalization. Western blot analysis of V2R-GFP showed a broad 57- to 68-kDa band and a doublet at 46 and 52 kDa before VP treatment. After 4-h VP exposure, the 57- to 68-kDa band lost 50% of its intensity, whereas the lower 46-kDa band increased by 200%. The lysosomal inhibitor chloroquine abolished this VP effect, whereas lactacystin, a proteasome inhibitor, had no effect. Incubating cells at 20°C to block trafficking from the trans-Golgi network reduced V2R membrane fluorescence, and a perinuclear patch developed. Cycloheximide reduced the intensity of this patch, showing that newly synthesized V2R-GFP contributed significantly to its appearance. Cycloheximide also inhibited the reappearance of cell surface V2R after downregulation. We conclude that after downregulation, V2R-GFP is delivered to lysosomes and degraded. Reappearance of V2R at the cell surface depends on new protein synthesis, partially explaining the long time lag needed to fully reestablish V2R at the cell surface after downregulation. This degradative pathway may be an adaptive response to allow receptor-ligand association in the hypertonic and acidic environment of the renal medulla.


1999 ◽  
Vol 277 (2) ◽  
pp. R427-R433 ◽  
Author(s):  
Takako Saito ◽  
San-E Ishikawa ◽  
Sei Sasaki ◽  
Minori Higashiyama ◽  
Shoichiro Nagasaka ◽  
...  

Arginine vasopressin (AVP) plays an important role in the expression of aquaporin (AQP-2) in the collecting duct. The present study was undertaken to determine whether there is an AVP-independent regulation of AQP-2 gene expression in homozygous Brattleboro rats in which endogenous AVP is absent. Exogenous administration of 1-deamino-8-d-AVP produced an antidiuresis and expressed AQP-2 mRNA and AQP-2 protein in the renal medulla of the homozygous Brattleboro rats. Twelve hours of water deprivation produced severe dehydration in the homozygous Brattleboro rats, such that urinary osmolality increased from 200 to 649 mosmol/kgH2O. However, no increase in AQP-2 mRNA expression was observed after this dehydration, and the medullary tissue content and urinary excretion of AQP-2 also remained unchanged. Increases in AQP-2 mRNA expression and AQP-2 protein were evident in Long-Evans rats after 64 h of water deprivation, with a severity of dehydration almost equal to the 12-h dehydrated, homozygous Brattleboro rats. These results indicate the lack of an AVP-independent mechanism for upregulating AQP-2 mRNA expression in renal collecting duct cells.


Sign in / Sign up

Export Citation Format

Share Document