Dissociation of ammoniagenic enzyme adaptation in rat S1 proximal tubules and ammonium excretion response

1994 ◽  
Vol 267 (3) ◽  
pp. F407-F414 ◽  
Author(s):  
S. R. DiGiovanni ◽  
K. M. Madsen ◽  
A. D. Luther ◽  
M. A. Knepper

We measured ammonium production rates, phosphate-dependent glutaminase (PDG) activity, and glutamate dehydrogenase (GDH) activity in microdissected S1 proximal tubules of rats to investigate the role of adaptations of PDG activity and GDH activity in response to a step increase in acid intake. In vivo ammonium excretion increased much more rapidly than did single-tubule ammonium production in vitro or ammoniagenic enzyme activities measured in microdissected tubules, manifesting an 85-fold increase in the first 24 h. In vitro ammonium production rates in microdissected tubules rose only twofold in the first 24 h, fourfold by day 2, and fivefold by day 4 of acid loading. The adaptation of PDG activity paralleled the increase in single-tubule ammoniagenic capacity measured in vitro. GDH activity, on the other hand, did not change significantly even after 4 days of acid loading. From these observations, we conclude that 1) the adaptation of in vitro ammoniagenic capacity in S1 proximal tubules is temporally associated with an adaptation in PDG activity and not GDH activity, and 2) a major portion of the increased ammonium excretion seen in the first 24 h is due to factors other than an adaptive increase in ammoniagenic enzyme activity.

Mobile DNA ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Justin M. Waldern ◽  
Dorie Smith ◽  
Carol Lyn Piazza ◽  
E. Jake Bailey ◽  
Nicholas J. Schiraldi ◽  
...  

Abstract Background Group II introns are mobile retroelements, capable of invading new sites in DNA. They are self-splicing ribozymes that complex with an intron-encoded protein to form a ribonucleoprotein that targets DNA after splicing. These molecules can invade DNA site-specifically, through a process known as retrohoming, or can invade ectopic sites through retrotransposition. Retrotransposition, in particular, can be strongly influenced by both environmental and cellular factors. Results To investigate host factors that influence retrotransposition, we performed random insertional mutagenesis using the ISS1 transposon to generate a library of over 1000 mutants in Lactococcus lactis, the native host of the Ll.LtrB group II intron. By screening this library, we identified 92 mutants with increased retrotransposition frequencies (RTP-ups). We found that mutations in amino acid transport and metabolism tended to have increased retrotransposition frequencies. We further explored a subset of these RTP-up mutants, the most striking of which is a mutant in the ribosomal RNA methyltransferase rlmH, which exhibited a reproducible 20-fold increase in retrotransposition frequency. In vitro and in vivo experiments revealed that ribosomes in the rlmH mutant were defective in the m3Ψ modification and exhibited reduced binding to the intron RNA. Conclusions Taken together, our results reinforce the importance of the native host organism in regulating group II intron retrotransposition. In particular, the evidence from the rlmH mutant suggests a role for ribosome modification in limiting rampant retrotransposition.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Liudmila Zakharova ◽  
Hikmet Nural ◽  
Mohamed A Gaballa

Cardiac progenitor cells are generated from atria explants; however the cellular origin and the mechanisms of cell outgrowth are unclear. Using transgenic tamoxifen-induced Willms tumor 1 (Wt1)-Cre/ERT and Cre-activated GFP reporter mice, we found approximately 40% of explant-derived cells and 74% of explant-derived c-Kit+ cells originated from the epicardium. In atria from sham hearts, Wt1+ cells were located in a thin epicardial layer, while c-Kit+ cells were primarily found within both the sub-epicardium and the myocardium, albeit at low frequency. No overlap between c-Kit+ and Wt1+ cells was observed, suggesting that epicardial Wt1+ cells do not express c-Kit marker in vivo, but more likely the c-Kit marker was acquired in culture. Compared with 4 days in culture, at day 21 we observed 7 folds increase in Snail gene expression; 32% increase in α-smooth muscle actin (SMA) marker, and 30% decrease in E-cadherin marker, suggesting that the explant-derived cells underwent epithelial to mesenchymal transition (EMT) in vitro. Cell outgrowths released TGF-β (1036.4 ± 1.18 pm/ml) and exhibited active TGF-β signaling, which might triggered the EMT. Compared to shams, CHF cell outgrowths exhibited elevated levels of EMT markers, SMA (49% vs. 34%) and Snail (2 folds), and reduced level of Wt1 (11% vs. 22%). In addition, CHF cell outgrowths had two folds increase in Pai1 gene expression, a direct target of TGF-β signaling. In c-Kit+ cells derived from CHF explants, Nanog gene expression was 4 folds lower and Sox 2 was 2 folds lower compared with cells from shams. Suppression of EMT in cell outgrowth increased the percentage of c-Kit+ and Wt1+ cells by 17%, and 15%, respectively. Also suppression of EMT in c-Kit+ cells resulted in 4 folds increase in Nanog and 3 fold increase in Sox2 gene expressions. Our results showed that CHF may further exuberates EMT while diminishes the re-activation of pluripotency genes. Thus, EMT modulation in CHF is a possible strategy to regulate both the yield and the pluripotency of cardiac-explant-derived progenitor cells.


2021 ◽  
Author(s):  
Bin Qiu ◽  
Zhaohui Zhong ◽  
Shawn Righter ◽  
Yuxue Xu ◽  
Jun Wang ◽  
...  

Abstract FK506-binding protein 51 (encoded by Fkpb51) has been associated with stress-related mental illness. To identify its function, we studied the morphological consequences of Fkbp51 deletion. Artificial Intelligence-assist morphological analysis identified that Fkbp51 knock-out (KO) mice possess more elongated CA and DG but shorter in height in coronal section when compared to WT. Primary cultured Fkbp51 KO hippocampal neurons were shown to exhibit larger dendritic outgrowth than wild-type (WT) controls, pharmacological manipulation experiments suggest that this may occur through regulation of microtubule-associated protein. Both in vitro primary culture and in vivo labeling support that FKBP51 regulates microtubule-associated protein expression. Furthermore, in the absence of differences in mRNA expression, Fkbp51 KO hippocampus exhibited decreases in βIII-tubulin, MAP2, and Tau protein levels, but a greater than 2.5-fold increase in Parkin protein. Overexpression and knock-down FKBP51 demonstrated that FKBP51 negatively regulates Parkin in a dose-dependent and ubiquitin-mediated manner. These results indicate a potential novel post-translational regulatory of Parkin by FKBP51 and significance of their interaction on disease onset.


2015 ◽  
Vol 60 (3) ◽  
pp. 1226-1233 ◽  
Author(s):  
Petros Ioannou ◽  
Aggeliki Andrianaki ◽  
Tonia Akoumianaki ◽  
Irene Kyrmizi ◽  
Nathaniel Albert ◽  
...  

The modestin vitroactivity of echinocandins againstAspergillusimplies that host-related factors augment the action of these antifungal agentsin vivo. We found that, in contrast to the other antifungal agents (voriconazole, amphotericin B) tested, caspofungin exhibited a profound increase in activity against variousAspergillusspecies under conditions of cell culture growth, as evidenced by a ≥4-fold decrease in minimum effective concentrations (MECs) (P= 0. 0005). Importantly, the enhanced activity of caspofungin againstAspergillusspp. under cell culture conditions was strictly dependent on serum albumin and was not observed with the other two echinocandins, micafungin and anidulafungin. Of interest, fluorescently labeled albumin bound preferentially on the surface of germinatingAspergillushyphae, and this interaction was further enhanced upon treatment with caspofungin. In addition, supplementation of cell culture medium with albumin resulted in a significant, 5-fold increase in association of fluorescently labeled caspofungin withAspergillushyphae (P< 0.0001). Collectively, we found a novel synergistic interaction between albumin and caspofungin, with albumin acting as a potential carrier molecule to facilitate antifungal drug delivery toAspergillushyphae.


1988 ◽  
Vol 255 (5) ◽  
pp. F984-F994 ◽  
Author(s):  
M. VanScoy ◽  
M. Loghman-Adham ◽  
M. Onsgard ◽  
M. Szczepanska-Konkel ◽  
S. Homma ◽  
...  

We examined whether phosphonoformate (PFA) can cause phosphaturia through its direct action on brush-border membrane (BBM) in vivo. Infusion of PFA or of parathyroid hormone (PTH) to thyroparathyroidectomized rats caused a marked increase in fractional excretion of phosphate without changes in excretion of Na+ or of GFR. The PFA-induced phosphaturia was not accompanied by an increase in urinary adenosine-3',5'-cyclic monophosphate (cAMP); moreover, PFA added in vitro did not influence the PTH-sensitive adenylate cyclase and cAMP-phosphodiesterase in proximal convoluted tubules. In BBM vesicles (BBMV) from rats with PFA-elicited phosphaturia, neither the rate of Na+-Pi symport nor Na+-dependent binding of [14C]PFA on BBMV was changed, whereas in BBMV from PTH-infused rats the Vmax of Na+-Pi symport decreased. PFA is almost completely ultrafiltrable; no metabolic transformation of PFA was detected after [14C]PFA exposure to rat renal cortical slices, homogenate, or to blood. We conclude that PFA causes phosphaturia by direct inhibition of Na+-Pi symport across BBM in proximal tubules, acting from the luminal side. Thus PFA (foscarnet) has a unique direct mechanism of phosphaturic effect, via its action on Pi reabsorption in proximal tubules in vivo.


2020 ◽  
Author(s):  
JL Reading ◽  
VD Roobrouck ◽  
CM Hull ◽  
PD Becker ◽  
J Beyens ◽  
...  

AbstractRecent clinical experience has demonstrated that adoptive regulatory T cell therapy is a safe and feasible strategy to suppress immunopathology via induction of host tolerance to allo- and autoantigens. However, clinical trials continue to be compromised due to an inability to manufacture a sufficient Treg cell dose. Multipotent adult progenitor cells (MAPCⓇ) promote regulatory T cell differentiation in vitro, suggesting they may be repurposed to enhance ex vivo expansion of Tregs for adoptive cellular therapy. Here, we use a GMP compatible Treg expansion platform to demonstrate that MAPC cell-co-cultured Tregs (MulTreg) exhibit a log-fold increase in yield across two independent cohorts, reducing time to target dose by an average of 30%. Enhanced expansion is linked with a distinct Treg cell-intrinsic transcriptional program, characterized by diminished levels of core exhaustion (BATF, ID2, PRDM1, LAYN, DUSP1), and quiescence (TOB1, TSC22D3) related genes, coupled to elevated expression of cell-cycle and proliferation loci (MKI67, CDK1, AURKA, AURKB). In addition, MulTreg display a unique gut homing (CCR7lo β7hi) phenotype and importantly, are more readily expanded from patients with autoimmune disease compared to matched Treg lines, suggesting clinical utility in gut and/or Th1-driven pathology associated with autoimmunity or transplantation. Relative to expanded Tregs, MulTreg retain equivalent and robust purity, FoxP3 TSDR demethylation, nominal effector cytokine production and potent suppression of Th1-driven antigen specific and polyclonal responses in vitro and xeno graft vs host disease (xGvHD) in vivo. These data support the use of MAPC cell co-culture in adoptive Treg therapy platforms as a means to rescue expansion failure and reduce the time required to manufacture a stable, potently suppressive product.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Andrew J Smith ◽  
Iolanda Aquila ◽  
Beverley J Henning ◽  
Mariangela Scalise ◽  
Bernardo Nadal-Ginard ◽  
...  

The identification of resident, endogenous cardiac stem cells (eCSCs) has re-shaped our understanding of cardiac cellular physiology, while offering a significant potential therapeutic avenue. The biology of these cells must be better understood to harness their potential benefits. We used an acute dose (s.c.; 5mgkg-1) of isoproterenol (ISO) to induce diffuse cardiac injury, with associated eCSC activation, in rats. As peak eCSC activation was at 24 hours post ISO-injury, c-kitpos eCSCs were isolated, characterised and their potential for growth and regenerative potential was assessed in vitro and in vivo, respectively. Activated eCSCs showed increased cell cycling activity (51+1% in S- or G2/M phases vs. 9+2% of quiescent), Ki67 expression (56+7% vs. 10+1%) and TERT expression (14-fold increase vs. quiescent). When directly harvested in culture, activated eCSCs showed augmented proliferation, clonogenicity and cardiosphere formation compared to quiescent eCSCs. Activated eCSCs showed increases in expression of numerous growth factors, particularly HGF, IGF-1, TGF-β, periostin, PDGF-AA and VEGF-A. Furthermore, significant alterations were found in the miRnome, notably increased miR-146b and -221, and decreased miR-192 and -351. ISO+5FU was administrated to mice to induce a model of chronic dilated cardiomyopathy, which is characterized by the ablation of eCSCs and the absence of cardiomyocyte replenishment. In these mice with chronic heart failure, freshly isolated quiescent eCSCs or activated eCSCs (2d post-ISO) were injected through the tail vein. 28 days after injection, activated but not quiescent eCSCs re-populated the resident CSC pool, promoted robust new cardiomyocyte formation and improved cardiac function when compared to saline-treated mice. Dual-labelling with BrdU and EdU at selected stages after ISO injury determined that activated eCSCs returned to a quiescent level by 10 weeks post-injury. In conclusion, CSCs rapidly switch from a quiescent to an activated state to match the myocardial needs for myocyte replacement after injury and then spontaneously go back to quiescence. Harnessing the molecules regulating this process may open up future novel approaches for effective myocardial regeneration.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Shin-Young Park ◽  
Chen Yan ◽  
Bradford C Berk

Introduction— Thioredoxin-interacting protein (TXNIP) is an arrestin-like scaffold protein. We have shown previously that it is necessary for the transactivation of the vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) as well as promoting the migration and survival of endothelial cells (ECs). However, its roles in VEGF-induced angiogenesis and in vivo studies of TXNIP function have not been elucidated. Hypothesis— TXNIP regulates VEGF-mediated angiogenesis through modulation of angiogenic signaling pathways in ECs. Methods and Results— To determine the functions of TXNIP in ECs, we generated endothelial-specific TXNIP knockout (EC-TXNIP KO) mice (TXNIPflox/flox: Tie2-Cre/+). These mice displayed impaired capillary growth of the retinal vasculature compared to control mice. Furthermore, aortic rings from EC-TXNIP KO mice exhibited fewer and shorter vascular sprouts than those in control mice. To investigate the role of TXNIP in the regulation of VEGF-induced angiogenesis, we determined the subcellular localization of TXNIP in human umbilical vein EC (HUVEC). Immunofluorescence and cell fractionation studies revealed that upon VEGF stimulation (10ng/ml). TXNIP translocated from cytoplasm to the plasma membrane. There was a 9 fold increase of membrane associated TXNIP with a peak at 15 minutes compared to non-VEGF treatment cells. We hypothesized that membrane associated TXNIP may modulate VEGFR2 internalization and thereby affect VEGF-induced signaling and angiogenesis. To investigate this, we performed in vitro cell surface biotinylation assays in HUVEC. VEGFR2 internalization was decreased by 65% in TXNIP siRNA knockdown cells compared to control siRNA treated cells following VEGF stimulation. Consistent with this result, VEGF-induced phosphorylation of VEGFR2, PLCγ and ERK1/2 was decreased by knockdown of TXNIP. Significantly, TXNIP knockdown inhibited VEGF-induced proliferation and tube formation in vitro. Conclusion— Our results suggest that TXNIP can modulate VEGF-induced angiogenesis and signaling by regulation of VEGFR2 internalization.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Bronson A Haynes ◽  
Eric J Lehrer ◽  
Giann J Bhatt ◽  
Ryan W Huyck ◽  
Ashley N James ◽  
...  

The mechanisms underlying vascular dysfunction in adipose tissue (AT) in obesity are not clearly understood. Our hypothesis is that in response to pro-inflammatory cytokines (PIC) present in obese AT, endothelial cells (EC) can de-differentiate and acquire a mesenchymal-like phenotype (EndoMT) that leads to endothelial dysfunction. To test our hypothesis, we measured endothelial and mesenchymal markers of CD31 + CD34 + EC isolated from omental (OM) and subcutaneous (SC) AT of bariatric subjects (BAMVEC) using RT-PCR and western blot. Permeability and oxidative metabolism were determined by ECIS and Seahorse analyzer XF e 24, respectively. BAMVEC isolated from both OM and SC fat showed very low protein expression of vWF and VE-Cadherin (EC markers) and abundantly expressed αSMA and the EMT transcription factor twist-1. To determine effects of PIC on EndoMT, commercially available primary endothelial cells from AT (HAMVEC) were treated in vitro with PIC (2.5ng/mL TNFα, IFNγ and TGFβ) for 1, 3 or 6 days. We found progressive down-regulation by >2-fold (p<0.001) of the EC markers vWF, VE-Cadherin, and Occludin compared to controls. As early as 1 day of PIC treatment twist-1 (p<0.001) and snail1 (p<0.05) showed an increase by >2-fold. Similarly, OM and SC BAMVEC expressed >2-fold increase in the mesenchymal genes twist-1, FSP1, αSMA, and snail1 compared to untreated HAMVEC. Metabolically, BAMVEC had increased ATP production and maximal respiration compared to HAMVEC suggesting increased oxidative phosphorylation, a marker of mesenchymal-like cells. PIC stimulation of HAMVEC yielded significant increases in endothelial permeability and motility (p<0.001). Notably, there were no significant differences in any of the markers between OM and SC BAMVEC. These results show that EC in obese AT exhibit a mesenchymal-like phenotype which may account for functional changes such as increased permeability and migration and are not depot specific. Using primary EC from human AT we showed that prolonged exposure to PIC induces a phenotype similar to CD31+CD34+ EC from obese AT. This supports the concept that AT inflammation can promote EC de-differentiation in vivo and our in vitro model is suitable for future studies to uncover the relevant mechanisms.


Blood ◽  
1998 ◽  
Vol 92 (3) ◽  
pp. 822-833 ◽  
Author(s):  
Ko Narumi ◽  
Motoyoshi Suzuki ◽  
Wenru Song ◽  
Malcolm A.S. Moore ◽  
Ronald G. Crystal

Abstract For many in vivo gene therapy clinical applications, it is desirable to control the expression of the transferred transgene using pharmacologic agents. To evaluate the feasibility of accomplishing this using corticosteroids, pharmacologic agents widely used in clinical medicine, we constructed replication deficient adenoviral (Ad) vectors containing an expression cassette with a chimeric promoter comprised of five glucocorticoid response elements (GRE) and the chloramphenicol acetyltransferase reporter gene (AdGRE.CAT) or the murine thrombopoietin cDNA (AdGRE.mTPO). In vitro studies showed the vectors functioned as expected, with marked glucocorticoid-induced upregulation of the CAT or mTPO transgenes. To evaluate the inducibility of the GRE promoter in vivo, the AdGRE.CAT vector was administered intravenously to C57B1/6 mice, and CAT activity was quantified in liver before and after intraperitoneal administration of dexamethasone. The GRE promoter activity was dependent on the dexamethasone dose, with a 100-fold increase in CAT expression with 50 μg dexamethasone, similar to the levels observed in vivo with the Rous sarcoma virus long terminal repeat constitutive promoter. After dexamethasone administration, maximum CAT activity was observed at day 2, with a slow decline to baseline levels by 2 weeks. Based on these observations, we hypothesized that a single administration of an Ad vector-mediated transfer of the chimeric GRE inducible promoter driving the mTPO cDNA would enable repetitive administration of corticosteroids to repetitively upregulate platelet levels for 1 to 2 weeks. The data show that this occurs, with dexamethasone administration every 3 weeks associated with 1-week elevations (at each 3-week interval) of serum mTPO levels, megakaryocyte numbers in bone marrow, and platelet levels fourfold to sixfold over baseline. Thus, with the appropriate promoter, it is possible to use a commonly used pharmacologic agent to upregulate the expression of a newly transferred gene on demand. © 1998 by The American Society of Hematology.


Sign in / Sign up

Export Citation Format

Share Document