Effect of salicylates on ventilatory response to inhaled carbon dioxide in normal subjects

1960 ◽  
Vol 15 (5) ◽  
pp. 826-828 ◽  
Author(s):  
Philip Samet ◽  
Eugene M. Fierer ◽  
William H. Bernstein

The basic purpose of this investigation was to determine whether salicylates increase the sensitivity of the respiratory center to inhaled CO2. The problem was approached by noting the effect of salicylates upon ventilation and arterial blood Co2 tension and pH during inhalation of compressed air and 3% and 5% Co2 in air. These studies were performed in 30 subjects, 15 of whom ingested 2.1 gm salicylate; the other 15 ingested 3.6 gm. The results demonstrate that the ventilatory response to CO2 was increased only by the larger dose of salicylate. Variations in dead-space volume secondary to increments in tidal volume were observed. Dead-space volume increased in approximately linear fashion with increase in tidal volume. Submitted on October 28, 1959

1973 ◽  
Vol 45 (3) ◽  
pp. 375-386 ◽  
Author(s):  
E. A. Harris ◽  
Mary E. Hunter ◽  
Eve R. Seelye ◽  
Margaret Vedder ◽  
R. M. L. Whitlock

1. Two-hundred and forty duplicate estimations of physiological dead-space volume (VD) were made in forty-eight healthy subjects (twenty-four men and twenty-four women) aged from 20 to 74 years, to assess the predictive accuracy of various standards. 2. The VD/VT (physiological dead-space volume/tidal volume) ratio standard was least precise, but could be improved by allowing for sex and age. 3. The best prediction could be made by multiple regression of VD on age, height, tidal volume (VT) and the reciprocal of respiratory frequency (f), which gave an estimate with a standard deviation of 24·7 ml. 4. Theoretical and practical arguments favour the abandonment of the VD/VT ratio standard. Simple regression of VD on VT also is unsatisfactory, giving a much less precise estimate of VD than a multiple regression on VT and other variables.


1984 ◽  
Vol 67 (5) ◽  
pp. 493-497 ◽  
Author(s):  
George Tatsis ◽  
Keith Horsfield ◽  
Gordon Cumming

1. The first four breaths from a multi-breath nitrogen wash-out have been analysed in 20 normal subjects by differentiation and data smoothing of phase II of the expired concentrations of nitrogen and carbon dioxide. 2. This procedure yields a distribution curve which is skewed to the right, the mode of which represents the usual value of dead space. The minimum and maximum values were found by excluding 2.5% of data points at each end of the distribution. 3. The values of minimum, mode and maximum in men were 67.6, 147 and 300 ml. For women the values were 55.4, 109 and 235 ml. 4. It is suggested that this distribution reflects the asymmetrical nature of the bronchial tree and comparison with anatomical data suggests that anatomy is the principal determinant of the distribution of dead space. 5. The contribution made by the spread of the stationary interface within individual bronchioles is evident but small.


1984 ◽  
Vol 57 (6) ◽  
pp. 1704-1709 ◽  
Author(s):  
C. J. Allen ◽  
N. L. Jones ◽  
K. J. Killian

Changes in expired alveolar O2 and CO2 were measured breath-by-breath in six healthy male subjects (mean age 30 yr, mean weight 80 kg) at rest, 600 kpm/min, and 1,200 kpm/min. Changes were expressed in relation to expired volume (liters) and time (s) and separated into an initial dead-space component using the Fowler method applied to expired CO2 and O2, and alveolar slope. The alveolar slopes with respect to time (dPACO2, dPAO2, Torr/s) increased in relation to CO2 output (VCO2, 1/min, STPD) and O2 intake (VO2, 1/min, STPD) but were reduced by increasing tidal volume (VT, liters, BTPS): dPACO2 = 2.7 + 4.6(VCO2) - 1.9(VT) (r = 0.97); and dPAO2 = 2.3 + 5.5(VO2) - 1.9(VT) (r = 0.96). From the alveolar slopes, tidal volume, and airway dead-space volume, mean expired alveolar PO2 and PCO2 (PAO2, PACO2) were calculated. There was no change in arterialized capillary PCO2 (PaCO2) between rest (38.9 +/- 0.66 Torr) and heavy exercise (38.2 +/- 2.18 Torr), but mean PACO2 rose from 36.7 +/- 0.55 to 40.8 +/- 1.67 Torr during heavy exercise. There was no change in arterialized capillary (mean = 84.3 +/- 0.7 Torr) or alveolar (mean = 107.2 +/- 1.03 Torr) PO2. Exercise increases the fluctuations in alveolar gas composition leading to discrepancies between the PCO2 in mean alveolar gas and arterial blood to an extent that is dependent on VCO2 and VT.


2013 ◽  
Vol 115 (9) ◽  
pp. 1268-1274 ◽  
Author(s):  
Constanze Dassow ◽  
David Schwenninger ◽  
Hanna Runck ◽  
Josef Guttmann

Volumetric capnography is a standard method to determine pulmonary dead space. Hereby, measured carbon dioxide (CO2) in exhaled gas volume is analyzed using the single-breath diagram for CO2. Unfortunately, most existing CO2 sensors do not work with the low tidal volumes found in small animals. Therefore, in this study, we developed a new mainstream capnograph designed for the utilization in small animals like rats. The sensor was used for determination of dead space volume in healthy and surfactant-depleted rats ( n = 62) during spontaneous breathing (SB) and mechanical ventilation (MV) at three different tidal volumes: 5, 8, and 11 ml/kg. Absolute dead space and wasted ventilation (dead space volume in relation to tidal volume) were determined over a period of 1 h. Dead space increase and reversibility of the increase was investigated during MV with different tidal volumes and during SB. During SB, the dead space volume was 0.21 ± 0.14 ml and increased significantly at MV to 0.39 ± 0.03 ml at a tidal volume of 5 ml/kg and to 0.6 ± 0.08 ml at a tidal volume of 8 and 11 ml/kg. Dead space and wasted ventilation during MV increased with tidal volume. This increase was mostly reversible by switching back to SB. Surfactant depletion had no further influence on the dead space increase during MV, but impaired the reversibility of the dead space increase.


Author(s):  
Santiago C. Arce ◽  
Fernando Chiodetti ◽  
Eduardo L. De Vito

1984 ◽  
Vol 64 (2) ◽  
pp. 505-543 ◽  
Author(s):  
J. M. Drazen ◽  
R. D. Kamm ◽  
A. S. Slutsky

Complete physiological understanding of HFV requires knowledge of four general classes of information: 1) the distribution of airflow within the lung over a wide range of frequencies and VT (sect. IVA), 2) an understanding of the basic mechanisms whereby the local airflows lead to gas transport (sect. IVB), 3) a computational or theoretical model in which transport mechanisms are cast in such a form that they can be used to predict overall gas transport rates (sect. IVC), and 4) an experimental data base (sect. VI) that can be compared to model predictions. When compared with available experimental data, it becomes clear that none of the proposed models adequately describes all the experimental findings. Although the model of Kamm et al. is the only one capable of simulating the transition from small to large VT (as compared to dead-space volume), it fails to predict the gas transport observed experimentally with VT less than equipment dead space. The Fredberg model is not capable of predicting the observed tendency for VT to be a more important determinant of gas exchange than is frequency. The remaining models predict a greater influence of VT than frequency on gas transport (consistent with experimental observations) but in their current form cannot simulate the additional gas exchange associated with VT in excess of the dead-space volume nor the decreased efficacy of HFV above certain critical frequencies observed in both animals and humans. Thus all of these models are probably inadequate in detail. One important aspect of these various models is that some are based on transport experiments done in appropriately scaled physical models, whereas others are entirely theoretical. The experimental models are probably most useful in the prediction of pulmonary gas transport rates, whereas the physical models are of greater value in identifying the specific transport mechanism(s) responsible for gas exchange. However, both classes require a knowledge of the factors governing the distribution of airflow under the circumstances of study as well as requiring detail about lung anatomy and airway physical properties. Only when such factors are fully understood and incorporated into a general description of gas exchange by HFV will it be possible to predict or explain all experimental or clinical findings.


1983 ◽  
Vol 55 (2) ◽  
pp. 472-478 ◽  
Author(s):  
V. Brusasco ◽  
T. J. Knopp ◽  
K. Rehder

During high-frequency small-volume ventilation (HFV), the transport rate of gas from the mouth to a lung region is a function of two conductances (conductance is the transfer rate of a gas divided by its partial pressure difference): regional longitudinal gas conductance along the airways (Grlongi) and gas conductance between lung regions (Ginter). Grlongi per unit regional lung (gas) volume [Grlongi/(Vr beta g)] was determined during HFV in 11 anesthetized paralyzed dogs lying supine. The distribution of Grlongi/(Vr beta g) was nearly uniform during HFV when stroke volumes were less than approximately two-thirds of the Fowler dead-space volume. By contrast, the distribution of Grlongi/(Vr beta g) was nonuniform when the stroke volume exceeded approximately two-thirds of the Fowler dead-space volume and the oscillation frequency was 5 Hz. Gas conductance along the airways per unit lung gas volume [average Glongi/(V beta g)], for the entire lung, increased with stroke volume at all frequencies, but for a given product of oscillation frequency and stroke volume, the average Glongi/(V beta g) was greater when stroke volume was large and oscillation frequency was low. The average Glongi/(V beta g) increased with frequency up to a maximal value; the frequency at which the maximum occurred depended on the kinematic viscosity of the inspired gas mixture.


2018 ◽  
Vol 51 (5) ◽  
pp. 1702251 ◽  
Author(s):  
Paolo Biselli ◽  
Kathrin Fricke ◽  
Ludger Grote ◽  
Andrew T. Braun ◽  
Jason Kirkness ◽  
...  

Nasal high flow (NHF) reduces minute ventilation and ventilatory loads during sleep but the mechanisms are not clear. We hypothesised NHF reduces ventilation in proportion to physiological but not anatomical dead space.11 subjects (five controls and six chronic obstructive pulmonary disease (COPD) patients) underwent polysomnography with transcutaneous carbon dioxide (CO2) monitoring under a metabolic hood. During stable non-rapid eye movement stage 2 sleep, subjects received NHF (20 L·min−1) intermittently for periods of 5–10 min. We measured CO2 production and calculated dead space ventilation.Controls and COPD patients responded similarly to NHF. NHF reduced minute ventilation (from 5.6±0.4 to 4.8±0.4 L·min−1; p<0.05) and tidal volume (from 0.34±0.03 to 0.3±0.03 L; p<0.05) without a change in energy expenditure, transcutaneous CO2 or alveolar ventilation. There was a significant decrease in dead space ventilation (from 2.5±0.4 to 1.6±0.4 L·min−1; p<0.05), but not in respiratory rate. The reduction in dead space ventilation correlated with baseline physiological dead space fraction (r2=0.36; p<0.05), but not with respiratory rate or anatomical dead space volume.During sleep, NHF decreases minute ventilation due to an overall reduction in dead space ventilation in proportion to the extent of baseline physiological dead space fraction.


2004 ◽  
Vol 97 (5) ◽  
pp. 1755-1762 ◽  
Author(s):  
Holger Schulz ◽  
Anne Schulz ◽  
Gunter Eder ◽  
Joachim Heyder

Carbon dioxide labeled with 18O (C18O2) was used as a tracer gas for single-breath measurements in six anesthetized, mechanically ventilated beagle dogs. C18O2 is taken up quasi-instantaneously in the gas-exchanging region of the lungs but much less so in the conducting airways. Its use allows a clear separation of phase II in an expirogram even from diseased individuals and excludes the influence of alveolar concentration differences. Phase II of a C18O2 expirogram mathematically corresponds to the cumulative distribution of bronchial pathways to be traversed completely in the course of exhalation. The derivative of this cumulative distribution with respect to respired volume was submitted to a power moment analysis to characterize volumetric mean (position), standard deviation (broadness), and skewness (asymmetry) of phase II. Position is an estimate of dead space volume, whereas broadness and skewness are measures of the range and asymmetry of functional airway pathway lengths. The effects of changing ventilatory patterns and of changes in airway size (via carbachol-induced bronchoconstriction) were studied. Increasing inspiratory or expiratory flow rates or tidal volume had only minor influence on position and shape of phase II. With the introduction of a postinspiratory breath hold, phase II was continually shifted toward the airway opening (maximum 45% at 16 s) and became steeper by up to 16%, whereas skewness showed a biphasic response with a moderate decrease at short breath holding and a significant increase at longer breath holds. Stepwise bronchoconstriction decreased position up to 45 ± 2% and broadness of phase II up to 43 ± 4%, whereas skewness was increased up to twofold at high-carbachol concentrations. Under all circumstances, position of phase II by power moment analysis and dead space volume by the Fowler technique agreed closely in our healthy dogs. Overall, power moment analysis provides a more comprehensive view on phase II of single-breath expirograms than conventional dead space volume determinations and may be useful for respiratory physiology studies as well as for the study of diseased lungs.


1985 ◽  
Vol 68 (2) ◽  
pp. 215-225 ◽  
Author(s):  
A. J. Winning ◽  
R. D. Hamilton ◽  
S. A. Shea ◽  
C. Knott ◽  
A. Guz

1. The effect on ventilation of airway anaesthesia, produced by the inhalation of a 5% bupivacaine aerosol (aerodynamic mass median diameter = 4.77 μm), was studied in 12 normal subjects. 2. The dose and distribution of the aerosol were determined from lung scans after the addition to bupivacaine of 99mTc. Bupivacaine labelled in this way was deposited primarily in the central airways. The effectiveness and duration of airway anaesthesia were assessed by the absence of the cough reflex to the inhalation of three breaths of a 5% citric acid aerosol. Airway anaesthesia always lasted more than 20 min. 3. Resting ventilation was measured, by respiratory inductance plethysmography, before and after inhalation of saline and bupivacaine aerosols. The ventilatory response to maximal incremental exercise and, separately, to CO2 inhalation was studied after the inhalation of saline and bupivacaine aerosols. Breathlessness was quantified by using a visual analogue scale (VAS) during a study and by questioning on its completion. 4. At rest, airway anaesthesia had no effect on mean tidal volume (VT), inspiratory time (Ti), expiratory time (Te) or end-tidal Pco2, although the variability of tidal volume was increased. On exercise, slower deeper breathing was produced and breathlessness was reduced. The ventilatory response to CO2 was increased. 5. The results suggest that stretch receptors in the airways modulate the pattern of breathing in normal man when ventilation is stimulated by exercise; their activation may also be involved in the genesis of the associated breathlessness. 6. A hypothesis in terms of a differential airway/alveolar receptor block, is proposed to explain the exaggerated ventilatory response to CO2.


Sign in / Sign up

Export Citation Format

Share Document