Blood lactates after prolonged severe exercise

1963 ◽  
Vol 18 (3) ◽  
pp. 619-622 ◽  
Author(s):  
Per-Olof Åstrand ◽  
Inger Hallbäck ◽  
Rune Hedman ◽  
Bengt Saltin

Blood was drawn from cross-country skiers at 1–3 min after the finish in competitions on distances from 10 to 85 km and the blood lactate determined. Despite a maximal effort of the skiers, accentuated at the end of the race, there was a successive decrease in the blood lactate concentration with work time. After a 10-km race, work time 35–36 min, the average was 139 mg/100 ml of blood (12.5 mEq/liter); after a 30-km race, with a time of 1 hr 50 min-1 hr 56 min, the mean value was 68 mg/100 ml (6.1 mEq/liter); and after a 50-km race, work time 3 hr 6 min-3 hr 18 min, 39 mg/100 ml (3.5 mEq/liter). A lactate concentration exceeding 100 mg/100 ml is a common finding after maximal muscular exercise involving large muscles. The explanation for the low values after prolonged maximal work, indicating a different kind of fatigue, is presently obscure. Data are presented on the oxygen uptake attained during skiing at actual racing speed (average Vo2 = 4.45 liters/min). Submitted on July 16, 1962

1989 ◽  
Vol 66 (3) ◽  
pp. 1104-1107 ◽  
Author(s):  
M. E. Campbell ◽  
R. L. Hughson ◽  
H. J. Green

The applicability of a continuous model description of the blood lactate concentration [( La-]) vs. O2 uptake (VO2) relationship was studied in nine healthy male volunteers during three different ramp exercise protocols. The work rate was increased at either 8, 15, or 50 W/min. The continuous model for [La-] = a + b exp(cVO2) was compared statistically with a previously proposed log-log transformation model for the [La-] and VO2 variables. It was found that the mean square error was significantly less for the continuous as opposed to the log-log model (P less than 0.01) by analysis of variance pooled across all three ramp slopes. The mean square errors from the individual ramp slopes were also significantly less for the continuous model by paired t test (P less than 0.05). It was observed that the major contributor to the increased error of the log-log model was at VO2's at or above the intersection point (lactate threshold) of the two linear log-transformed segments. The log-log transformation does not appear to relate to any physiological process. The lactate slope index, taken as the point where the slope of the relationship between [La-] and VO2 (i.e., d[La-]/dVO2) equaled 1, occurred at a mean VO2 of 2.25 and 2.37 l/min for the 15- and 8-W/min ramp slopes, respectively, but at 2.76 l/min for the 50-W/min ramp (P less than 0.05). It is concluded that [La-] increases as a continuous function with respect to VO2 across a wide range of ramp work rate slopes.


1985 ◽  
Vol 58 (6) ◽  
pp. 2082-2089 ◽  
Author(s):  
L. B. Gladden ◽  
J. W. Yates ◽  
R. W. Stremel ◽  
B. A. Stamford

Twenty-four coded graph sets of gas exchange variables and blood lactate concentration (LA) plotted against time at 15-s intervals were analyzed by nine evaluators who determined the gas exchange (ATGE) and LA (ATLA) anaerobic thresholds. In addition, ATGE and ATLA were determined by a linear regression computer program. Agreement between ATGE and ATLA was poor; the median intraclass correlation coefficient (ri) was 0.53. Among evaluators, ATLA agreement (median ri = 0.81) was better than ATGE agreement (median ri = 0.70). In general, the ability of any evaluator to choose similar values from duplicate plots for either ATGE (median ri = 0.97) or ATLA (median ri = 0.995) was good. There was better agreement between the mean ATLA of the evaluators and the computer ATLA (ComLA) (ri = 0.88) than between the mean ATGE of the evaluators and the computer ATGE (ComVE), (ri = 0.58). Agreement between ComVE and ComLA was poor (ri = 0.29). These results suggest that ATGE does not accurately predict ATLA and that different evaluators choose different thresholds from the same data. Further assessment of the validity and precision of ATGE based on breath-by-breath and minute-by-minute data is needed.


2015 ◽  
Vol 16 (2) ◽  
Author(s):  
Benedikt A. Gasser ◽  
Hans H. Hoppeler

AbstractPurpose. Recreational cross-country skiers can benefit from a performance diagnostic when planning a training program. The aim of this study was to establish a simple test protocol to measure endurance capacity and provide training recommendations. Methods. The relationship between endurance performance and cross-country skiing technique was assessed using two tests. First, a lactate threshold test whereby running speed was determined on a treadmill at 4 mmol/l blood lactate concentration. Second, participants completed a variation of the Cooper test using skating technique on flat terrain to determine the distance covered in 12 min and maximum heart rate. Results. There was a correlative (r = 0.18 respectivelly R2 = 0.43) relationship of between the distance covered in the Cooper test and treadmill running speed at 4 mmol/l blood lactate concentration. Conclusions. The two tests allow recreational athletes to rank themselves with regards to their endurance capacity within a population. The relationship between distance covered and maximum heart rate can indicate whether future training should focus on technical or physical improvement.


2017 ◽  
Vol 4 (05) ◽  
pp. 1318
Author(s):  
Asghar Nikseresht ◽  
Iman Yabande ◽  
Karamatollah Rahmanian ◽  
Abdolreza Sotoodeh Jahromi

Introduction: To avoid injuries during high-intensity sports training, it is important to recognize conditions of bodily consumption and production of adequate energy; exercise increases the concentration of the blood lactate. This paper is an attempt to compare pre and post lactate tolerance exercise test - blood lactate concentrations - of elite boy swimmers. Methods: Blood lactates are measured by an enzymatic method on 12 subjects 30 minutes before and adjust and 24 hours after the test. Results: The mean lactate concentration of 30.35±12.16 mg/dl is observed in swimmers 30 minutes before the test. Swimmers adjust after the test show mean blood lactate concentration of 108.52±18.17 mg/dl that is significantly higher than 30 minutes before the test (p<0.001). Then blood lactate level decreases below baseline level at 24 hours after the test. Conclusion: Blood lactate increases with the test and decreases below baseline within 24 hours after the test. 


2020 ◽  
Vol 24 (3) ◽  
pp. 137-142 ◽  
Author(s):  
R. Penov ◽  
P. Petrov ◽  
S. Kolimechkov

Background and Study Aim : Karate is going to take part in the Olympic games, for the first time in Tokyo 2020. The aim of this study was to analyse the changes in heart rate (HR) and blood lactate concentration of karate practitioners performing different katas in competitive conditions. Material and Methods : This study consisted of five elite male athletes (26.80±5.97 years), members of the Bulgarian national team in Shotokan karate, competing in the kata discipline. The study was conducted in competitive conditions during national competitions, in which three katas were performed by each of the competitors. Capillary blood lactate concentration (La) was determined at rest and after each kata. Heart rate (HR) was registered and physical activity was monitored by using three-dimensional accelerometers. Results: The mean La increased progressively after each following kata: 1.4±0.32 mmol/L at rest, 4.7±1.91 mmol/L after the first, 6.8±2.59 mmol/L after the second, and 7.1±2.35 mmol/L after the third kata. This increase was significant after the second (р<0.05) and third (р<0.01) kata, in comparison with the registered La at rest. The mean HR values reached 179±11.55 bpm during the first, 180±11.63 bpm during the second, and 181.5±15.44 bpm during the third kata. Conclusions: The La appeared to be a more informative parameter than heart rate, and the moderate increase of the La values (4-6 mmol/L) indicated optimal muscle tension and amplitude of moves when performing katas in competitive conditions. Further research is needed to determine the optimal La levels for the performance of different katas.


1998 ◽  
Vol 85 (6) ◽  
pp. 2118-2124 ◽  
Author(s):  
Veronique L. Billat ◽  
Ruddy Richard ◽  
Valerie M. Binsse ◽  
Jean P. Koralsztein ◽  
Philippe Haouzi

The purpose of this study was to examine the influence of the type of exercise (running vs. cycling) on the O2uptake (V˙o 2) slow component. Ten triathletes performed exhaustive exercise on a treadmill and on a cycloergometer at a work rate corresponding to 90% of maximalV˙o 2 (90% work rate maximalV˙o 2). The duration of the tests before exhaustion was superimposable for both type of exercises (10 min 37 s ± 4 min 11 s vs. 10 min 54 s ± 4 min 47 s for running and cycling, respectively). TheV˙o 2 slow component (difference between V˙o 2 at the last minute and minute 3 of exercise) was significantly lower during running compared with cycling (20.9 ± 2 vs. 268.8 ± 24 ml/min). Consequently, there was no relationship between the magnitude of theV˙o 2 slow component and the time to fatigue. Finally, because blood lactate levels at the end of the tests were similar for both running (7.2 ± 1.9 mmol/l) and cycling (7.3 ± 2.4 mmol/l), there was a clear dissociation between blood lactate and the V˙o 2slow component during running. These data demonstrate that 1) theV˙o 2 slow component depends on the type of exercise in a group of triathletes and 2) the time to fatigue is independent of the magnitude of theV˙o 2 slow component and blood lactate concentration. It is speculated that the difference in muscular contraction regimen between running and cycling could account for the difference in theV˙o 2 slow component.


1994 ◽  
Vol 77 (2) ◽  
pp. 684-691 ◽  
Author(s):  
R. L. Ge ◽  
Q. H. Chen ◽  
L. H. Wang ◽  
D. Gen ◽  
P. Yang ◽  
...  

To examine the hypothesis that the pathway of adaptation to high altitude in natives differs considerably from that in newcomers, we measured maximal O2 uptake (VO2max), minute ventilation, anaerobic threshold (AT), blood lactate, and blood gases during maximal exercise in 17 lifelong Tibetan residents and 14 acclimatized Han Chinese newcomers living at the altitude of 4,700 m. The two groups were similar in age, height, and weight, and the subjects were nonathletes. Although VO2max was significantly lower in the Tibetans than in the Hans (30.4 +/- 1.5 vs. 36.0 +/- 1.9 ml.min-1.kg-1 STPD; P < 0.05), at maximal exercise effort the exercise workload was greater (167.7 +/- 4.2 vs. 150.0 +/- 5.9 W; P < 0.05). The mean AT values (in % VO2max) in the Tibetan and Han subjects were 84.1 and 61.6%, respectively (P < 0.01). Minute ventilation at maximal exercise was significantly lower in the Tibetans than in the Hans (68.4 +/- 3.4 vs. 79.7 +/- 4.1 l/min BTPS; P < 0.05), whereas heart rate at maximal effort was equivalent in the two groups. The Tibetans showed lower blood lactate value than did the Hans both before and at the end of exercise. We conclude that the Tibetan natives have higher exercise performance and AT but lower VO2max and blood lactate concentration than do acclimatized Han newcomers. These results may reflect the effects of genetic or peripheral adaptation factors in the Tibetan natives.


Author(s):  
Per-Øyvind Torvik ◽  
Roland van den Tillaar ◽  
Guro Bostad ◽  
Øyvind Sandbakk

Abstract Purpose The purpose of this study was to examine the effect of pole length on performance and technique selection during a simulated skating cross-country (XC) skiing competition on snow in female XC skiers. Methods Nine female XC skiers and biathletes (VO2max 63.6 ± 6.2 mL/min/kg, age 22.9 ± 3.5 years, body height 1.69 ± 0.1 m and body mass 60.8 ± 4.6 kg) completed two 5-km skating time-trail with maximal effort. The athletes had a minimum 4.5 h of rest between the two races, which were performed in a random order: one with self-selected poles (89.0% ± 0.6% of body height) and one with 7.5 cm increased pole length (94.0% ± 0.5% of body height). Speed in set terrain sections was determined and the selection of sub-technique was self-reported immediately after each race based on a detailed review of the entire track. Results Skiers performed on average 7.1 ± 7.1 s (P = 0.029) faster with the long poles, with this difference occurring during the first 200 m and in the uphill parts of the track, in which ~ 5% more G3 and ~ 5% fewer G2 sub-techniques were chosen (both P < 0.05). The rating of perceived exertion was 1 ± 0.9 point lower (P = 0.04) and skiing technique was perceived to be ~ 1.2 ± 1.5 points better with long poles (P = 0.038), while the physiological responses (i.e., peak and average heart rate, and blood lactate concentration) did not differ between trials. Conclusion In conclusion, poles 7.5 cm longer than self-selected ones improved performance in skating, by enhancing speed in the initial phase (first 200 m) and in the uphill section of the track. In addition, the longer poles induced more use of the G3 skating sub-technique.


2015 ◽  
Vol 63 (1) ◽  

We suggest that leisure cross country skiers can also profit from a serious endurance capacity diagnostic. The aim of this study was to establish a reliable and valid protocol in order to make serious recommendation for training schedule of athleths. In order to analyze the relationship between endurance performance and the technic specific capabilities of cross country skiing aiming to allow valid recommendations participants had to absolve two test protocols. The first test consisted of detecting running pace on a treadmill at a 4 mmol/l blood lactate concentration. Second, participants had to absolve a Coopertest in skating technique on flat ground allowing to measure maximum distance absolved during 12 minutes and maximum heart rate. Between the absolved distance on the Coopertest and the pace at 4mmol/l blood lactate a correlative relationship of 0,43 was identified (R2 = 0,43). These analyses allow that participants can position themselves in the sample concerning their technical capabilities. On the other side our analyses let us suggest, that technical capabilities also in leisure sports play an important role, which are best continousely and constantely trained.


Sign in / Sign up

Export Citation Format

Share Document