Hair density, wind speed, and heat loss in mammals

1965 ◽  
Vol 20 (4) ◽  
pp. 796-801 ◽  
Author(s):  
R. T. Tregear

The heat loss from excised pelts of rabbits, horses, and pigs has been measured at various wind speeds. The temperature gradient through the fur was also measured. The thermal insulation of fur is highly dependent on the hair density (i.e., number of hairs/ cm2), and on the wind passing over its surface. If there are less than 1,000 hairs/cm2, an 8-mph wind penetrates deep into the fur, but at higher hair densities an 18-mph wind penetrates only a little way into the fur. fur insulation; obstruction of wind by hair Submitted on September 10, 1964

1988 ◽  
Vol 64 (5) ◽  
pp. 1916-1922 ◽  
Author(s):  
Y. H. Park ◽  
J. Iwamoto ◽  
F. Tajima ◽  
K. Miki ◽  
Y. S. Park ◽  
...  

The present work was undertaken to determine the critical water temperature (Tcw), defined as the lowest water temperature a subject can tolerate at rest for 3 h without shivering, of wet-suited subjects during water immersion at different ambient pressures. Nine healthy males wearing neoprene wet suits (5 mm thick) were subjected to immersion to the neck in water at 1, 2, and 2.5 ATA while resting for 3 h. Continuous measurements of esophageal (T(es)) and skin (Tsk) temperatures and heat loss from the skin (Htissue) and wet suits (Hsuit) were recorded. Insulation of the tissue (Itissue), wet suits (Isuit), and overall total (Itotal) were calculated from the temperature gradient and the heat loss. The Tcw increased curvilinearly as the pressure increased, whereas the metabolic heat production during rest and immersion was identical over the range of pressure tested. During the 3rd h of immersion, Tes was identical under all atmospheric pressures; however, Tsk was significantly higher (P less than 0.05) at 2 and 2.5 ATA compared with 1 ATA. A 42 (P less than 0.001) and 50% (P less than 0.001), reduction in Isuit from the 1 ATA value was detected at 2 and 2.5 ATA, respectively. However, overall mean Itissue was maximal and independent of the pressure during immersion at Tcw. The Itotal was also significantly smaller in 2 and 2.5 ATA compared with 1 ATA. The Itissue provided most insulation in the extremities, such as the hand and foot, and the contribution of Isuit in these body parts was relatively small. On the other hand, Itissue of the trunk areas, such as the chest, back, and thigh, was not high compared with the extremities, and Isuit played a major role in the protection of heat drain from these body parts.


The Auk ◽  
1986 ◽  
Vol 103 (1) ◽  
pp. 160-168 ◽  
Author(s):  
Jan R. E. Taylor

Abstract The thermal insulation of the down and feathers of Chinstrap (Pygoscelis antarctica) and Gentoo (P. papua) penguin chicks was measured throughout development in still air and in wind parallel and perpendicular to the plumage. Insulation increased with age. Whole-body insulation of chicks measured in still air (body core to environment) was significantly correlated with the insulation of their pelts at a given age. The insulation of the downy pelts of 10- and 15-day-old chicks was significantly lower than that of all older chicks, and explains the dependence of chicks of that age on continuous brooding by parents, despite their high thermogenic capacities. The down of older chicks provided good insulation in wind speeds of 3-5 m/s. With no wind, the down of Gentoos immediately before molting was a better insulator than feathers of prefledged chicks. The insulation of the feathers of prefledged chicks in parallel air flow up to 5 m/s was 87-112% of its value in still air. However, the insulation increased at higher wind speeds; in Gentoo pelts at winds of 15 m/s, it averaged 136% (maximum 179%) of the insulation in still air. Increasing insulative values of feathers or fur under increasing wind speeds have not been demonstrated previously in any bird or mammal. The insulation of down at various wind speeds and micrometeorological data from the Gentoo Penguin rookery on King George Island, Antarctica were compared. It follows that heat loss of older downy Gentoo chicks is not affected significantly by wind. These chicks can remain within their thermoneutral zones on windy days.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Xiaotao Zheng ◽  
Xiaohai Zhang ◽  
Jiuyang Gao ◽  
Linwei Ma ◽  
Wei Wang ◽  
...  

Abstract Sealing performance and heat loss are important factors for pipe flange joints (PFJs) subjected to medium or high temperatures. Heat loss is of great interest in practical engineering for uninsulated PFJs. Since an insulation layer may degrade the sealing performance of PFJs, heat loss of PFJs was tested and simulated considering various ambient temperatures of −10 °C, 0 °C, 10 °C, 20 °C, 30 °C, and 40 °C, with wind speeds of 0 m/s and 3 m/s and flange joint target temperatures of 200 °C, 300 °C, and 400 °C. It is worth noting that the experiments were performed during summer for high ambient temperatures and during winter for low ambient temperatures. As expected, the steady temperature slightly increases with the increase of external ambient temperature. For the same flange joint temperature, a 3 m/s wind speed decreases significantly the steady temperature, especially when the higher target temperature is applied. If the external wind speed is 3 m/s and the flange joint target temperatures are 200 °C, 300 °C, and 400 °C, respectively, the heat loss increases by approximately 38.4%, 30.7% and 23.6% when the ambient temperature changes from 30 °C to 10 °C. Moreover, the simulated temperatures agree well with the tested temperatures in most cases, and the average error is approximately 8%. The energy saving efficiency under the windless condition is approximately on average 26% higher than that with a wind speed of 3 m/s.


Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2796
Author(s):  
Andrzej Osuch ◽  
Ewa Osuch ◽  
Stanisław Podsiadłowski ◽  
Piotr Rybacki

In the introduction to this paper, the characteristics of Góreckie lake and the construction and operation of the wind-driven pulverizing aerator are presented. The purpose of this manuscript is to determine the efficiency of the pulverizing aerator unit in the windy conditions of Góreckie Lake. The efficiency of the pulverization aerator depends on the wind conditions at the lake. It was necessary to conduct thorough research to determine the efficiency of water flow through the pulverization segment (water pump). It was necessary to determine the rotational speed of the paddle wheel, which depended on the average wind speed. Throughout the research period, measurements of hourly average wind speed were carried out. It was possible to determine the efficiency of the machine by developing a dedicated mathematical model. The latest method was used in the research, consisting of determining the theoretical volumetric flow rates of water in the pulverizing aerator unit, based on average hourly wind speeds. Pulverization efficiency under the conditions of Góreckie Lake was determined based on 6600 average wind speeds for spring, summer and autumn, 2018. Based on the model, the theoretical efficiency of the machine was calculated, which, under the conditions of Góreckie Lake, amounted to 75,000 m3 per year.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1587
Author(s):  
Krzysztof Wrobel ◽  
Krzysztof Tomczewski ◽  
Artur Sliwinski ◽  
Andrzej Tomczewski

This article presents a method to adjust the elements of a small wind power plant to the wind speed characterized by the highest annual level of energy. Tests were carried out on the basis of annual wind distributions at three locations. The standard range of wind speeds was reduced to that resulting from the annual wind speed distributions in these locations. The construction of the generators and the method of their excitation were adapted to the characteristics of the turbines. The results obtained for the designed power plants were compared with those obtained for a power plant with a commercial turbine adapted to a wind speed of 10 mps. The generator structure and control method were optimized using a genetic algorithm in the MATLAB program (Mathworks, Natick, MA, USA); magnetostatic calculations were carried out using the FEMM program; the simulations were conducted using a proprietary simulation program. The simulation results were verified by measurement for a switched reluctance machine of the same voltage, power, and design. Finally, the yields of the designed generators in various locations were determined.


2021 ◽  
Vol 9 (3) ◽  
pp. 246
Author(s):  
Difu Sun ◽  
Junqiang Song ◽  
Xiaoyong Li ◽  
Kaijun Ren ◽  
Hongze Leng

A wave state related sea surface roughness parameterization scheme that takes into account the impact of sea foam is proposed in this study. Using eight observational datasets, the performances of two most widely used wave state related parameterizations are examined under various wave conditions. Based on the different performances of two wave state related parameterizations under different wave state, and by introducing the effect of sea foam, a new sea surface roughness parameterization suitable for low to extreme wind conditions is proposed. The behaviors of drag coefficient predicted by the proposed parameterization match the field and laboratory measurements well. It is shown that the drag coefficient increases with the increasing wind speed under low and moderate wind speed conditions, and then decreases with increasing wind speed, due to the effect of sea foam under high wind speed conditions. The maximum values of the drag coefficient are reached when the 10 m wind speeds are in the range of 30–35 m/s.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2104 ◽  
Author(s):  
Dorota Anna Krawczyk ◽  
Tomasz Janusz Teleszewski

This paper presents possible variants of reducing the heat loss in an existing heating network made from single pre-insulated pipes located in central Europe. In order to achieve this aim, simulations were carried out for five different variants related to the modification of the network operation temperature, replacement of a single network with a double pre-insulated one, and changes in the cross-section geometry of the thermal insulation of the double heating network from circular to egg-shaped. The proposed egg-shaped thermal insulation was obtained by modifying the shape of the Cassini oval, in that the supply pipe has a greater insulation thickness compared to the return pipe. The larger insulation field in the supply pipe contributed to reducing the heat flux density around the supply line and, as a result, to significantly reducing heat loss. The egg-shaped thermal insulation described in the publication in a mathematical formula can be used in practice. This work compares the heat losses for the presented variants and determines the ecological effect. Heat losses were determined using the boundary element method (BEM), using a proprietary computer program written as part of the VIPSKILLS 2016-1-PL01-KA203-026152 project Erasmus+.


2013 ◽  
Vol 28 (1) ◽  
pp. 159-174 ◽  
Author(s):  
Craig Miller ◽  
Michael Gibbons ◽  
Kyle Beatty ◽  
Auguste Boissonnade

Abstract In this study the impacts of the topography of Bermuda on the damage patterns observed following the passage of Hurricane Fabian over the island on 5 September 2003 are considered. Using a linearized model of atmospheric boundary layer flow over low-slope topography that also incorporates a model for changes of surface roughness, sets of directionally dependent wind speed adjustment factors were calculated for the island of Bermuda. These factors were then used in combination with a time-stepping model for the open water wind field of Hurricane Fabian derived from the Hurricane Research Division Real-Time Hurricane Wind Analysis System (H*Wind) surface wind analyses to calculate the maximum 1-min mean wind speed at locations across the island for the following conditions: open water, roughness changes only, and topography and roughness changes combined. Comparison of the modeled 1-min mean wind speeds and directions with observations from a site on the southeast coast of Bermuda showed good agreement between the two sets of values. Maximum open water wind speeds across the entire island showed very little variation and were of category 2 strength on the Saffir–Simpson scale. While the effects of surface roughness changes on the modeled wind speeds showed very little correlation with the observed damage, the effect of the underlying topography led to maximum modeled wind speeds of category 4 strength being reached in highly localized areas on the island. Furthermore, the observed damage was found to be very well correlated with these regions of topographically enhanced wind speeds, with a very clear trend of increasing damage with increasing wind speeds.


Sign in / Sign up

Export Citation Format

Share Document