Muscle fiber composition and blood ammonia levels after intense exercise in humans

1983 ◽  
Vol 54 (2) ◽  
pp. 582-586 ◽  
Author(s):  
G. A. Dudley ◽  
R. S. Staron ◽  
T. F. Murray ◽  
F. C. Hagerman ◽  
A. Luginbuhl

The relationship between fiber type composition and the increase in blood ammonia was examined following a maximal O2 consumption (VO2max) test. Muscle biopsies were taken from the middle portion of the vastus lateralis for determination of fiber type percentages. Two subject groups were selected on the basis of a high (HST) or low (LST) percentage of slow-twitch fibers and compared for blood ammonia and lactate levels after exercise at work loads of approximately 85 and 110% of VO2max. An inverse relationship was found between the percentage of slow-twitch fibers and the increase in blood ammonia. Blood ammonia increased after exercise at both 85 and 110% of VO2max. However, the increase was twofold greater for the LST group following the 110% work effort. The increases in blood ammonia and lactate were positively correlated for both groups following exercise. The results suggest that the proportion of slow-twitch fibers plays an important role in determining the magnitude of the increase in blood ammonia after intense exercise.

1988 ◽  
Vol 254 (6) ◽  
pp. E726-E732 ◽  
Author(s):  
R. J. Zeman ◽  
R. Ludemann ◽  
T. G. Easton ◽  
J. D. Etlinger

Chronic treatment of rats with clenbuterol, a beta 2-receptor agonist (8–12 wk), caused hypertrophy of histochemically identified fast- but not slow-twitch fibers within the soleus, while the mean areas of both fiber types were increased in the extensor digitorum longus (EDL). In contrast, treatment with the beta 2-receptor antagonist, butoxamine, reduced fast-twitch fiber size in both muscles. In the solei and to a lesser extent in the EDLs, the ratio of the number of fast- to slow-twitch fibers was increased by clenbuterol, while the opposite was observed with butoxamine. The muscle fiber hypertrophy observed in the EDL was accompanied by parallel increases in maximal tetanic tension and muscle cross-sectional area, while in the solei, progressive increases in rates of force development and relaxation toward values typical of fast-twitch muscles were also observed. Our results suggest a role of beta 2-receptors in regulating muscle fiber type composition as well as growth.


Metabolites ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 10
Author(s):  
Shoko Sawano ◽  
Keishi Oza ◽  
Tetsuya Murakami ◽  
Mako Nakamura ◽  
Ryuichi Tatsumi ◽  
...  

To clarify the relationship between the fiber type composition and meat quality, we performed metabolomic analysis using porcine longissimus dorsi (LD) muscles. In the LD of pigs raised outdoors, the expression of myosin heavy chain (MyHC)1 (slow-twitch fiber marker protein) was significantly increased compared with that of MyHC1 in pigs raised in an indoor pen, suggesting that rearing outdoors could be considered as an exercise treatment. These LD samples were subjected to metabolomic analysis for examining the profile of most primary and secondary metabolites. We found that the sex of the animal and exercise stimulation had a strong influence on the metabolomic profile in the porcine skeletal muscles, and this difference in the metabolomic profile is likely in part due to the changes in the muscle fiber type. We also examined the effects of cooking (70 °C for 1 h). The effect of exercise on the metabolomic profile was also maintained in the cooked muscle tissues. Cooking treatment resulted in an increase in some of the metabolite levels while decreasing in some other metabolite levels. Thus, our study could indicate the effect of the sex of the animal, exercise stimulus, and cooking on the metabolomic profile of pork meat.


1979 ◽  
Vol 47 (2) ◽  
pp. 388-392 ◽  
Author(s):  
R. J. Gregor ◽  
V. R. Edgerton ◽  
J. J. Perrine ◽  
D. S. Campion ◽  
C. DeBus

The relationship between the predominance of fast and slow muscle fibers of the vastus lateralis and “in vivo” torque velocity properties in 22 female athletes was studied. Fiber types were classified according to the histochemical myofibrillar adenosine triphosphatase technique at a basic pH. Maximal extensor troques were recorded at 30 degrees from full extension at four selected velocities. While results confirm earlier reports on muscle fiber type and performance, an additional finding was that as knee extension velocities increased from 0 to 95 degrees/s angle specific extensor torque production did not decline as seen in in vitro muscle preparations. The difference in extensor torque between 0 and 96 degrees/s appeared far more critical than the differences observed between 96 and 288 degrees/s. Significant differences in torque were seen at 96, 192, and 288 degrees/s in thos with greater than 50% and less than 50% slow-twitch fibers. When expressed per kilogram of body weight the subjects with greater than 50% fast-twitch fiber produced the greatest torque at 192 degrees/s. These results suggest that the velocity at which torque begins to decline in vivo is related to the proportion of slow-twitch fibers in the vastus lateralismuscle.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 243 ◽  
Author(s):  
Manting Ma ◽  
Bolin Cai ◽  
Liang Jiang ◽  
Bahareldin Ali Abdalla ◽  
Zhenhui Li ◽  
...  

Emerging studies indicate important roles for non-coding RNAs (ncRNAs) as essential regulators in myogenesis, but relatively less is known about their function. In our previous study, we found that lncRNA-Six1 can regulate Six1 in cis to participate in myogenesis. Here, we studied a microRNA (miRNA) that is specifically expressed in chickens (miR-1611). Interestingly, miR-1611 was found to contain potential binding sites for both lncRNA-Six1 and Six1, and it can interact with lncRNA-Six1 to regulate Six1 expression. Overexpression of miR-1611 represses the proliferation and differentiation of myoblasts. Moreover, miR-1611 is highly expressed in slow-twitch fibers, and it drives the transformation of fast-twitch muscle fibers to slow-twitch muscle fibers. Together, these data demonstrate that miR-1611 can mediate the regulation of Six1 by lncRNA-Six1, thereby affecting proliferation and differentiation of myoblasts and transformation of muscle fiber types.


1984 ◽  
Vol 57 (1) ◽  
pp. 246-253 ◽  
Author(s):  
S. M. Sullivan ◽  
R. N. Pittman

In vitro oxygen consumption (VO2), histochemical fiber type, capillary arrangement, and muscle fiber geometry were measured in three hamster striated muscles. These muscles varied markedly in their histochemical fiber type composition (% by number): retractor (70% FG, fast-twitch, glycolytic; 16% FOG, fast-twitch, oxidative-glycolytic; 14% SO, slow-twitch, oxidative); soleus (57% FOG, 43% SO), and sartorius (98% FG, 2% FOG). Sartorius VO2 [0.80 +/- 0.034 (SE) ml O2 X min-1 X 100 g-1] was significantly different (P less than 0.01) from VO2 of retractor (0.89 +/- 0.038) and soleus (1.00 +/- 0.048).The number of capillaries around a fiber and the surface area/volume were greater for FOG and SO fibers than for FG fibers. Fibers of all types appeared to be roughly elliptical in shape. Capillaries were uniformly distributed around fibers in the soleus, but they were located more toward the ends of the major diameter in the retractor and sartorius. The results suggest a relationship among a fiber's oxidative capacity (based on its histochemical staining pattern), number of surrounding capillaries and surface area/volume. Furthermore, results suggest that VO2 and capillary spacing around a fiber may depend on fiber type.


2004 ◽  
Vol 96 (3) ◽  
pp. 1039-1044 ◽  
Author(s):  
Paul McDonough ◽  
Brad J. Behnke ◽  
Timothy I. Musch ◽  
David C. Poole

The speed with which muscle energetic status recovers after exercise is dependent on oxidative capacity and vascular O2 pressures. Because vascular control differs between muscles composed of fast- vs. slow-twitch fibers, we explored the possibility that microvascular O2 pressure (PmvO2; proportional to the O2 delivery-to-O2 uptake ratio) would differ during recovery in fast-twitch peroneal (Per: 86% type II) compared with slow-twitch soleus (Sol: 84% type I). Specifically, we hypothesized that, in Per, PmvO2 would be reduced immediately after contractions and would recover more slowly during the off-transient from contractions compared with Sol. The Per and Sol muscles of six female Sprague-Dawley rats (weight = ∼220 g) were studied after the cessation of electrical stimulation (120 s; 1 Hz) to compare the recovery profiles of PmvO2. As hypothesized, PmvO2 was lower throughout recovery in Per compared with Sol (end contraction: 13.4 ± 2.2 vs. 20.2 ± 0.9 Torr; end recovery: 24.0 ± 2.4 vs. 27.4 ± 1.2 Torr, Per vs. Sol; P ≤ 0.05). In addition, the mean response time for recovery was significantly faster for Sol compared with Per (45.1 ± 5.3 vs. 66.3 ± 8.1 s, Sol vs. Per; P < 0.05). Despite these findings, PmvO2 rose progressively in both muscles and at no time fell below end-exercise values. These data indicate that, during the recovery from contractions (which is prolonged in Per), capillary O2 driving pressure (i.e., PmvO2) is reduced in fast-compared with slow-twitch muscle. In conclusion, the results of the present investigation may partially explain the slowed recovery kinetics (phosphocreatine and O2 uptake) found previously in 1) fast- vs. slow-twitch muscle and 2) various patient populations, such as those with congestive heart failure and diabetes mellitus.


1980 ◽  
Vol 48 (3) ◽  
pp. 523-527 ◽  
Author(s):  
J. L. Ivy ◽  
R. T. Withers ◽  
P. J. Van Handel ◽  
D. H. Elger ◽  
D. L. Costill

This study examined the relationship between the respiratory capacity of an individual's skeletal muscle and the work rate at which blood lactate accumulation begins (lactate threshold). Comparisons were also made among fiber type, VO2max, and the lactate threshold. Muscle biopsies were taken from the vastus lateralis muscle for determination of respiratory capacity and fiber type (myosin ATPase). The lactate threshold was assessed in terms of both the absolute work rate (VO2) and relative work rate (%VO2max). The capacity of muscle homogenates to oxidize pyruvate was significantly (P less than 0.01) related to the absolute (r = 0.94) and relative (r = 0.83) lactate thresholds. Significant positive correlations (P less than 0.01) were also found between the percent of slow-twitch fibers and absolute (r = 0.74) and relative (r = 0.70) lactate thresholds. The results suggest that the muscle's respiratory capacity is of primary importance in determining the work rate at which blood lactate accumulation begins. They also suggest that the proportion of slow-twitch fibers may play an important role in determining the relative lactate threshold.


2013 ◽  
Vol 114 (9) ◽  
pp. 1235-1245 ◽  
Author(s):  
Sanford Levine ◽  
Muhammad H. Bashir ◽  
Thomas L. Clanton ◽  
Scott K. Powers ◽  
Sunil Singhal

A profound remodeling of the diaphragm and vastus lateralis (VL) occurs in patients with moderate-to-severe chronic obstructive pulmonary disease (COPD). In this mini-review, we discuss the following costal diaphragm remodeling features noted in patients with moderate-to-severe COPD: 1) deletion of serial sarcomeres, 2) increased proportion of slow-twitch fibers, 3) fast-to-slow isoform shift in sarco(endo)plasmic reticulum Ca2+-ATPase, 4) increased capacity of oxidative metabolism, 5) oxidative stress, and 6) myofiber atrophy. We then present the sole feature of diaphragm remodeling noted in mild-to-moderate COPD under the heading “ MyHC and contractile remodeling noted in mild-to-moderate COPD.” The importance of VL remodeling in COPD patients as a prognostic indicator as well as a major determinant of the ability to carry out activities of daily living is well accepted. We present the remodeling of the VL noted in COPD patients under the following headings: 1) Decrease in proportion of slow-twitch fibers, 2) Decreased activity of oxidative pathways, 3) Oxidative and nitrosative stress, and 4) Myofiber atrophy. For each of the remodeling features noted in both the VL and costal diaphragm of COPD patients, we present mechanisms that are currently thought to mediate these changes as well as the pathophysiology of each remodeling feature. We hope that our mechanistic presentation stimulates research in this area that focuses on improving the ability of COPD patients to carry out increased activities of daily living.


Sports ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 164 ◽  
Author(s):  
Evangelia Zacharia ◽  
Polyxeni Spiliopoulou ◽  
Spyridon Methenitis ◽  
Angeliki-Nikoletta Stasinaki ◽  
Nikolaos Zaras ◽  
...  

The aim of the study was to evaluate power performance and muscle morphology adaptations in response to 5 weeks of fast-eccentric squat training (FEST) performed twice per week, with three different training volumes. Twenty-five moderately trained females were assigned into three groups performing eight repetitions of FEST of either four sets (4 × 8 group; N = 9), 6 sets (6 × 8 group; N = 8) or eight sets (8 × 8 group, N = 8). Before and after the intervention, countermovement jumping height (CMJh) and power (CMJp), half squat maximal strength (1-RM), quadriceps cross-sectional area (QCSA) and vastus lateralis (VL) architecture and fiber type composition were evaluated. Significant increases (p < 0.05) were found for all groups, with no differences among them in 1-RM (4 × 8: 14.8 ± 8.2%, 6 × 8: 13.1 ± 9.2% and 8 × 8: 21.6 ± 7.0%), CMJh (4 × 8: 12.5 ± 8.5%, 6 × 8: 11.3 ± 9.3% and 8 × 8: 7.0 ± 6.2%), CMJp (4 × 8: 9.1 ± 6.0%, 6 × 8: 7.1 ± 5.2% and 8 × 8: 5.0 ± 3.9%) and QCSA (4 × 8: 7.7 ± 4.7%, 6 × 8: 9.0 ± 6.8% and 8 × 8: 8.2 ± 6.5%). Muscle fiber type distribution remained unaltered after training in all groups. VL fascicle length increased and fascicle angle decreased only in 6 × 8 and 8 × 8 groups. In conclusion, four sets of eight fast-eccentric squats/week increase lower body power and strength performance and maintain type IIX muscle fibers after 5 weeks, at least in moderately trained females.


Sign in / Sign up

Export Citation Format

Share Document