Effect of heart weight on distribution of lung surface pressures in vertical dogs

1986 ◽  
Vol 61 (2) ◽  
pp. 712-718 ◽  
Author(s):  
E. Bar-Yishay ◽  
R. E. Hyatt ◽  
J. R. Rodarte

In head-up dogs the vertical gradient of transpulmonary pressure (VGTP) disappears after pneumothorax develops. Our laboratory recently confirmed that the heart moves downward and posteriorly with pneumothorax. To study the extent to which the heart is supported by the lungs, we used a linear elasticity model and finite-element analysis. The lung and heart were assumed to be symmetric along a vertical axis. Reported values of the elastic properties of lung and heart were assigned. The model was generated first without the heart, using the lung alone. The heart was then added to the model. Finally, heart weight was doubled. Adding the heart caused the VGTP to increase; doubling the heart weight further increased the VGTP. These increases were more pronounced at higher lung volumes. Lung inflation was accompanied by an upward displacement of the heart. Inclusion of the heart caused increased inhomogeneities in regional volume distribution. The effect of heart weight may in part explain why the VGTP in the head-up dog is greater than that predicted by lung density.

1992 ◽  
Vol 73 (1) ◽  
pp. 123-133 ◽  
Author(s):  
Z. Fu ◽  
M. L. Costello ◽  
K. Tsukimoto ◽  
R. Prediletto ◽  
A. R. Elliott ◽  
...  

We previously showed that when pulmonary capillaries in anesthetized rabbits are exposed to a transmural pressure (Ptm) of approximately 40 mmHg, stress failure of the walls occurs with disruption of the capillary endothelium, alveolar epithelium, or sometimes all layers. The present study was designed to test whether stress failure occurred more frequently at high than at low lung volumes for the same Ptm. Lungs of anesthetized rabbits were inflated to a transpulmonary pressure of 20 cmH2O, perfused with autologous blood at 32.5 or 2.5 cmH2O Ptm, and fixed by intravascular perfusion. Samples were examined by both transmission and scanning electron microscopy. The results were compared with those of a previous study in which the lung was inflated to a transpulmonary pressure of 5 cmH2O. There was a large increase in the frequency of stress failure of the capillary walls at the higher lung volume. For example, at 32.5 cmH2O Ptm, the number of endothelial breaks per millimeter cell lining was 7.1 +/- 2.2 at the high lung volume compared with 0.7 +/- 0.4 at the low lung volume. The corresponding values for epithelium were 8.5 +/- 1.6 and 0.9 +/- 0.6. Both differences were significant (P less than 0.05). At 52.5 cmH2O Ptm, the results for endothelium were 20.7 +/- 7.6 (high volume) and 7.1 +/- 2.1 (low volume), and the corresponding results for epithelium were 32.8 +/- 11.9 and 11.4 +/- 3.7. At 32.5 cmH2O Ptm, the thickness of the blood-gas barrier was greater at the higher lung volume, consistent with the development of more interstitial edema. Ballooning of the epithelium caused by accumulation of edema fluid between the epithelial cell and its basement membrane was seen at 32.5 and 52.5 cmH2O Ptm. At high lung volume, the breaks tended to be narrower and fewer were oriented perpendicular to the axis of the pulmonary capillaries than at low lung volumes. Transmission and scanning electron microscopy measurements agreed well. Our findings provide a physiological mechanism for other studies showing increased capillary permeability at high states of lung inflation.


1994 ◽  
Vol 76 (4) ◽  
pp. 1774-1785 ◽  
Author(s):  
L. E. Olson ◽  
E. A. Hoffman

Lung volume, gradients in lung air content, and maximum in vivo lung dimensions were determined in rabbits in the prone, supine, and right and left lateral positions with a high-speed electron beam X-ray computed tomography scanner (Imatron C-100). Measurements were made at lung volumes corresponding to tracheal pressures of 0, 10, and 25 cmH2O. Three groups of rabbits were studied > or = 8 wk after surgery: sham-operated controls, left pneumonectomized, and left pneumonectomized with wax plombage. The magnitudes of the gradients in each direction (lung, length, width, and height) depended on lung volume and body position. The vertical gradient in air content was the largest in each group in each posture. In general, pneumonectomy did not influence the effects of the prone and supine positions on lung volume and volume distribution but did influence the effects of the right and left lateral positions on those variables. These results may be attributed to the variable effects of the mediastinal and abdominal contents on regional distending pressures.


1985 ◽  
Vol 58 (1) ◽  
pp. 52-57 ◽  
Author(s):  
R. E. Hyatt ◽  
E. Bar-Yishay ◽  
M. D. Abel

Estimations were made of the vertical gradient of transpulmonary pressure (VGTP) from measurements of esophageal pressure in nine head-up dogs at functional residual capacity (FRC) when alive, when dead, and after total bilateral pneumothorax. The VGTP of 0.4 cmH2O/cm height in the alive state was abolished by pneumothorax, and roentgenograms showed that the heart moved in a caudal-dorsal direction. There was a small but significant increase in the VGTP on going from FRC to near total lung capacity (TLC) in alive head-up dogs. In eight dead head-up dogs heart weight was increased by replacing various amounts of heart blood with Hg. The VGTP was significantly increased from 0.28 to 0.51 cmH2O/cm height. The fractional increase in the VGTP was similar to the fractional increase in heart weight. In five dogs extrapolation to zero heart weight gave an average VGTP of 0.14 cmH2O/cm height. We conclude that the lungs help support the heart in the head-up dog and that the VGTP is in part determined by the pressure distribution required for this support.


2019 ◽  
Vol 126 (1) ◽  
pp. 183-192 ◽  
Author(s):  
Paul J. C. Hughes ◽  
Laurie Smith ◽  
Ho-Fung Chan ◽  
Bilal A. Tahir ◽  
Graham Norquay ◽  
...  

In this study, the effect of lung volume on quantitative measures of lung ventilation was investigated using MRI with hyperpolarized 3He and 129Xe. Six volunteers were imaged with hyperpolarized 3He at five different lung volumes [residual volume (RV), RV + 1 liter (1L), functional residual capacity (FRC), FRC + 1L, and total lung capacity (TLC)], and three were also imaged with hyperpolarized 129Xe. Imaging at each of the lung volumes was repeated twice on the same day with corresponding 1H lung anatomical images. Percent lung ventilated volume (%VV) and variation of signal intensity [heterogeneity score (Hscore)] were evaluated. Increased ventilation heterogeneity, quantified by reduced %VV and increased Hscore, was observed at lower lung volumes with the least ventilation heterogeneity observed at TLC. For 3He MRI data, the coefficient of variation of %VV was <1.5% and <5.5% for Hscore at all lung volumes, while for 129Xe data the values were 4 and 10%, respectively. Generally, %VV generated from 129Xe images was lower than that seen from 3He images. The good repeatability of 3He %VV found here supports prior publications showing that percent lung-ventilated volume is a robust method for assessing global lung ventilation. The greater ventilation heterogeneity observed at lower lung volumes indicates that there may be partial airway closure in healthy lungs and that lung volume should be carefully considered for reliable longitudinal measurements of %VV and Hscore. The results suggest that imaging patients at different lung volumes may help to elucidate obstructive disease pathophysiology and progression. NEW & NOTEWORTHY We present repeatability data of quantitative metrics of lung function derived from hyperpolarized helium-3, xenon-129, and proton anatomical images acquired at five lung volumes in volunteers. Increased regional ventilation heterogeneity at lower lung inflation levels was observed in the lungs of healthy volunteers.


1985 ◽  
Vol 58 (3) ◽  
pp. 954-963 ◽  
Author(s):  
R. Brower ◽  
R. A. Wise ◽  
C. Hassapoyannes ◽  
B. Bromberger-Barnea ◽  
S. Permutt

Phasic changes in lung blood volume (LBV) during the respiratory cycle may play an important role in the genesis of the respiratory wave in arterial pressure, or pulsus paradoxus. To better understand the effects of lung inflation on LBV, we studied the effect of changes in transpulmonary pressure (delta Ptp) on pulmonary venous flow (Qv) in eight isolated canine lungs with constant inflow. Inflation when the zone 2 condition was predominant resulted in transient decreases in Qv associated with increases in LBV. In contrast, inflation when the zone 3 condition was predominant resulted in transient increases in Qv associated with decreases in LBV. These findings are consistent with a model of the pulmonary vasculature that consists of alveolar and extra-alveolar vessels. Blood may be expelled from alveolar vessels but is retained in extra-alveolar vessels with each inflation. The net effect on LBV and thus on Qv is dependent on the zone conditions that predominate during inflation, with alveolar or extra-alveolar effects being greater when the zone 3 or zone 2 conditions predominate, respectively. Lung inflation may therefore result in either transiently augmented or diminished Qv. Phasic changes in left ventricular preload may therefore depend on the zone conditions of the lungs during the respiratory cycle. This may be an important modulator of respiratory variations in cardiac output and blood pressure.


1978 ◽  
Vol 45 (4) ◽  
pp. 528-535 ◽  
Author(s):  
K. Rehder ◽  
T. J. Knopp ◽  
A. D. Sessler

The intrapulmonary distribution of inspired gas (ventilation/unit lung volume, VI), functional residual capacity (FRC), closing capacity (CC), and the slope of phase III were determined in five awake and five anesthetized-paralyzed volunteers who were in the prone position with the abdomen unsupported. After induction of anesthesia-paralysis, FRC was less in four of five subjects and CC was consistently less. At FRC there was no difference in the vertical gradient of regional lung volumes between the awake and anesthetized-paralyzed prone subjects. Also, there was no difference in VI between the two states. The normalized slope of phase III decreased consistently with induction of anesthesia-paralysis, but the vertical distribution of a 133Xe bolus inhaled from residual volume was not different between the two states. The data of the study are compatible with 1) a pattern of expansion of the respiratory system during anesthesia-paralysis and mechanical ventilation different than that during spontaneous breathing and 2) a more uniform intraregional distribution of inspired gas and/or a different sequence of emptying during anesthesia-paralysis.


1975 ◽  
Vol 38 (2) ◽  
pp. 228-235 ◽  
Author(s):  
M. Demedts ◽  
J. Clement ◽  
D. C. Stanescu ◽  
K. P. van de Woestijne

In 20 healthy subjects and 18 patients with bronchial obstruction, closing volume (CV) on single-breath nitrogen washout curves and inflection point (IP) on transpulmonary pressure-volume curves were recorded simultaneously during slow expiratory vital capacity maneuvers. IP and CV did not occur at identical lung volumes, IP being systematically larger than CV for small CV values. This discrepancy could not be attributed to an esophageal or mediastinal artifact. It is suggested that, though CV and IP both express “airway closure,” their sensitivity to closure may differ: CV underestimates closure because of a dead space effect; the latter may vary individually. On the other hand, IP may not reflect the true beginning of closure, particularly when it occurs at higher lung volumes.


1981 ◽  
Vol 240 (2) ◽  
pp. H190-H198 ◽  
Author(s):  
J. E. Angell-James ◽  
R. Elsner ◽  
M. De Burgh Daly

In the anesthetized harbor seal, Phoca vitulina, the Hering-Breuer inflation reflex was weak and comparable to that in humans. Single inflations of the lungs from a syringe during the expiratory phase of normal breathing caused temporary inhibition of breathing and an immediate tachycardia dependent on the integrity of the cervical vagosympathetic nerves. A similar cardiac response occurred when the lungs were artificially inflated during an experimental dive and under conditions in which apnea and bradycardia were reflexly induced by a combination of stimulation of the carotid body chemoreceptors and of the trigeminal or laryngeal input. Recordings from single vagal afferent nerve fibers innervating presumptive pulmonary stretch receptors showed a close relationship between the increase in impulse frequency and increase in lung volume or transpulmonary pressure. It appears that in diving the decrease in pulmonary stretch receptor activity during apnea, combined with cessation of central inspiratory neuronal drive, is an important integrative mechanism that helps development of the reflex bradycardia of trigeminal, carotid, chemoreceptor, and baroreceptor origin.


1976 ◽  
Vol 40 (6) ◽  
pp. 915-922 ◽  
Author(s):  
D. G. Frazer ◽  
K. C. Weber

Degassed excised rat lungs were ventilated in a water-filled plethysmograph with the carina as the zero pressure reference. Pressure-volume curves were recorded from a minimum transpulmonary pressure (Pmin) of -5 cmH2O to a maximum pressure (Pmin) of 30 cmH2O. An index of the minimun volume for the lung (Vm) divided by the maximum lung volume for the same cycle (Vmax) was used as an index of the amount of air trapped within the lung. As the flow rate was decreased from 38.2 to 1.9 ml/min, there were significant increases in the amount of air trapped in the lung. As the maximum pressure was decreased to 25 and 20 cmH2O, or the minimum pressure was increased to 6 and 11 cmH2O, the amount of trapped air in the lung significantly decreased. The rate of lung inflation had a much greater influence on the amount of trapped air than either the deflation rate or stress relaxation. The results are consistent with the theory that bubbles are formed during inflation and are the main cause of air trapped in the excised lung.


1978 ◽  
Vol 44 (2) ◽  
pp. 216-224 ◽  
Author(s):  
J. F. Greenleaf ◽  
H. C. Smith ◽  
P. A. Chevalier ◽  
D. J. Sass ◽  
A. A. Bove ◽  
...  

Regional displacements of lung parenchyma due to respiratory movements at 1 G and 7 Gy were studied in anesthetized dogs in the left decubitus position in a water-filled respirator that provided control of respiratory volumes and rate and minimized inertial shifts in position and shape of the thorax and abdominal contents and related effects on the lungs. Inspiratory movements at 1 G were relatively uniform, although regional volume increased more in the nondependent (right) lung than in the dependent (left) lung. Regional functional residual capacity (FRC) increased in the nondependent lung and decreased in the dependent lung during exposures to 7 Gy. The greatest inspiratory increase in volume occurred near the midlung, where regional FRC changed the least during acceleration. The decrease in dependent and increase in nondependent lung volumes during acceleration are attributed to the increased weight and consequent downward displacement of the higher specific gravity mediastinal contents concomitantly with upward displacement of pulmonary gas, producing an exaggeration of the dependent-to-nondependent gradient in alveolar size.


Sign in / Sign up

Export Citation Format

Share Document