Transcription of the rat skeletal muscle hexokinase II gene is increased by acute exercise

1996 ◽  
Vol 81 (2) ◽  
pp. 789-793 ◽  
Author(s):  
R. M. O'Doherty ◽  
D. P. Bracy ◽  
D. K. Granner ◽  
D. H. Wasserman

A single bout of acute exercise increases hexokinase (HK) II mRNA and enzyme activity [R. M. O'Doherty, D. P. Bracy, H. Osawa, D. H. Wasserman, and D. K. Granner. Am. J. Physiol. 266 (Endocrinol. Metab. 29): E171-E178, 1994]. The present study addresses the mechanism of the increase in HK II mRNA. Male rats undertook a single bout of treadmill exercise and were then killed immediately or after a predetermined recovery period. The gastrocnemius/plantaris muscle complex, composed of mixed fiber types, was excised; the nuclei were isolated; and HK I, HK II, beta-actin, and alpha-tubulin gene transcription rates were measured. Genomic DNA and plasmid DNA were used as positive and negative controls, respectively. Immediately after the cessation of 30, 45, or 90 min of exercise, HK II gene transcription rates were 1.3 +/- 0.3-,2.9 +/- 0.3-, and 4.0 +/- 0.6-fold, respectively, above those of sedentary controls. The increases after 45 and 90 min of exercise were statistically significant (P < 0.01). One hour after the cessation of 30 min of exercise, HK II gene transcription was significantly increased (1.40 +/- 0.03-fold; P < 0.05). At all time points, transcription of the HK I, beta-actin, and alpha-tubulin genes was unchanged. We conclude that the exercise-induced increase in HK II gene transcription appears to play a major role in the increase of HK II mRNA and activity.

1994 ◽  
Vol 266 (2) ◽  
pp. E171-E178 ◽  
Author(s):  
R. M. O'Doherty ◽  
D. P. Bracy ◽  
H. Osawa ◽  
D. H. Wasserman ◽  
D. K. Granner

This study addresses the potential role of skeletal muscle hexokinase (HK) II in the regulation of glucose uptake and metabolism in vivo. Male rats undertook a single bout of treadmill exercise and were then killed immediately or after a predetermined recovery period. Three muscles [soleus (Sol), gastrocnemius/plantaris (Gc), and white vastus] were excised, and HK II mRNA, GLUT-4 mRNA, total HK (HK I and HK II) and heat-stable HK (predominantly HK I) activities were assessed. Three hours after the cessation of a single bout of exhaustive exercise, HK II mRNA was significantly increased in all three muscles. Ninety or thirty minutes of exercise, with a 3-h recovery, increased Gc HK II mRNA to the same extent as exhaustive exercise, but 15 min of exercise had no effect. Gc HK II mRNA continued to increase up to 8 h after the cessation of 90 min of exercise but returned to basal by 24 h postexercise. In contrast to HK II mRNA, Gc GLUT-4 mRNA was unchanged at 0, 3, 8, and 24 h after the cessation of 90 min of exercise. Total HK activity was significantly increased in Sol and Gc, 8 and 24 h after the cessation of 90 min of exercise. Heat-stable HK activity was unchanged in all three muscles. The increase in total HK activity, inferred to be an increase of HK II, may be important in the persistence of the postexercise increase in insulin action.


1997 ◽  
Vol 273 (4) ◽  
pp. E682-E687 ◽  
Author(s):  
Jared P. Jones ◽  
G. Lynis Dohm

Transport of glucose across the plasma membrane by GLUT-4 and subsequent phosphorylation of glucose by hexokinase II (HKII) constitute the first two steps of glucose utilization in skeletal muscle. This study was undertaken to determine whether epinephrine and/or insulin regulates in vivo GLUT-4 and HKII gene transcription in rat skeletal muscle. In the first experiment, adrenodemedullated male rats were fasted 24 h and killed in the control condition or after being infused for 1.5 h with epinephrine (30 μg/ml at 1.68 ml/h). In the second experiment, male rats were fasted 24 h and killed after being infused for 2.5 h at 1.68 ml/h with saline or glucose (625 mg/ml) or insulin (39.9 μg/ml) plus glucose (625 mg/ml). Nuclei were isolated from pooled quadriceps, tibialis anterior, and gastrocnemius muscles. Transcriptional run-on analysis indicated that epinephrine infusion decreased GLUT-4 and increased HKII transcription compared with fasted controls. Both glucose and insulin plus glucose infusion induced increases in GLUT-4 and HKII transcription of twofold and three- to fourfold, respectively, compared with saline-infused rats. In conclusion, epinephrine and insulin may regulate GLUT-4 and HKII genes at the level of transcription in rat skeletal muscle.


2019 ◽  
Vol 316 (5) ◽  
pp. E695-E706 ◽  
Author(s):  
Mark W. Pataky ◽  
Carmen S. Yu ◽  
Yilin Nie ◽  
Edward B. Arias ◽  
Manak Singh ◽  
...  

Insulin-stimulated glucose uptake (GU) by skeletal muscle is enhanced several hours after acute exercise in rats with normal or reduced insulin sensitivity. Skeletal muscle is composed of multiple fiber types, but exercise’s effect on fiber type-specific insulin-stimulated GU in insulin-resistant muscle was previously unknown. Male rats were fed a high-fat diet (HFD; 2 wk) and were either sedentary (SED) or exercised (2-h exercise). Other, low-fat diet-fed (LFD) rats remained SED. Rats were studied immediately postexercise (IPEX) or 3 h postexercise (3hPEX). Epitrochlearis muscles from IPEX rats were incubated in 2-deoxy-[3H]glucose (2-[3H]DG) without insulin. Epitrochlearis muscles from 3hPEX rats were incubated with 2-[3H]DG ± 100 µU/ml insulin. After single fiber isolation, GU and fiber type were determined. Glycogen and lipid droplets (LDs) were assessed histochemically. GLUT4 abundance was determined by immunoblotting. In HFD-SED vs. LFD-SED rats, insulin-stimulated GU was decreased in type IIB, IIX, IIAX, and IIBX fibers. Insulin-independent GU IPEX was increased and glycogen content was decreased in all fiber types (types I, IIA, IIB, IIX, IIAX, and IIBX). Exercise by HFD-fed rats enhanced insulin-stimulated GU in all fiber types except type I. Single fiber analyses enabled discovery of striking fiber type-specific differences in HFD and exercise effects on insulin-stimulated GU. The fiber type-specific differences in insulin-stimulated GU postexercise in insulin-resistant muscle were not attributable to a lack of fiber recruitment, as indirectly evidenced by insulin-independent GU and glycogen IPEX, differences in multiple LD indexes, or altered GLUT4 abundance, implicating fiber type-selective differences in the cellular processes responsible for postexercise enhancement of insulin-mediated GLUT4 translocation.


1997 ◽  
Vol 272 (3) ◽  
pp. H1412-H1418 ◽  
Author(s):  
Y. Chen ◽  
M. P. Chandler ◽  
S. E. DiCarlo

The influence of daily spontaneous running (DSR) and gender on postexercise cardiac autonomic responses was examined in spontaneously hypertensive rats. Rats were weaned at 4-5 wk of age and were randomly assigned to a sedentary (7 males and 6 females) or DSR (7 males and 8 females) group. After 8 weeks of DSR or sedentary control, rats were chronically instrumented with arterial and venous catheters. After 5 days of recovery, cardiac sympathetic (ST) and parasympathetic tonus (PT) were determined (by the response of heart rate to receptor antagonists) on alternate days under two experimental conditions: no exercise and postexercise. After a single bout of dynamic treadmill exercise (12 m/min, 10% grade for 40 min) ST was reduced (P < 0.05) (male sedentary: no exercise 45 +/- 4 vs. postexercise 28 +/- 3 beats/min; female sedentary: no exercise 69 +/- 10 vs. postexercise 37 +/- 7 beats/ min). PT was also altered after exercise (male sedentary: no exercise -31 +/- 4 vs. postexercise -11 +/- 2 beats/min; female sedentary: no exercise -5 +/- 4 vs. postexercise 7 +/- 4 beats/min). After DSR, ST was reduced (male sedentary 45 +/- 4 vs. DSR 22 +/- 3 beats/min; female sedentary 69 +/- 10 vs. DSR 36 +/- 4 beats/min) (P < 0.05). Finally, male rats had a lower ST and higher PT than female rats. These results demonstrate that 1) ST was reduced after a single bout of dynamic exercise; 2) ST was reduced after DSR; 3) the autonomic response to acute exercise was attenuated after DSR; and 4) there was a gender influence on the cardiac autonomic function.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Tatiana Ramos Fonseca ◽  
Thiago Teixeira Mendes ◽  
Guilherme Passos Ramos ◽  
Christian Emmanuel Torres Cabido ◽  
Rodrigo Figueiredo Morandi ◽  
...  

Acute physical exercise can modulate immune function. For example, acute exercise is known to increase the circulating concentration of cytokines. Exercise is also known to modulate immune function chronically. It is not known whether exercise training can result in training of the immune system. Here, we investigated the effects of six weeks of aerobic training on cytokine responses induced by acute exercise until fatigue. Twelve healthy men performed a fatiguing exercise at the anaerobic threshold (AT) intensity. After the training period, the participants performed another bout of acute exercise at the same duration and intensity of the pretraining situation. The analysis was made at the beginning, end, and at 10, 30, and 60 minutes during the recovery period. Training at AT induced a gain of 11.2% of exercise capacity. Before training, a single bout of acute exercise induced a significant increase in plasma levels of cytokines, including IL-6, TNF-α, sTNFR1, IL-10, CXCL10, BDNF, leptin, resistin, and adiponectin. After six weeks of aerobic training, levels of IL-6, sTNFR1, BDNF, and leptin increased to a lesser extent after an acute bout exercise at the same absolute intensity as the pretraining period. Responses to the same relative exercise intensity were similar to those observed before exercise. These results show that aerobic training is associated with training of acute immune responses to acute exercise until fatigue.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anisa Morava ◽  
Matthew James Fagan ◽  
Harry Prapavessis

AbstractStudies show that a single bout of exercise confers cognitive benefits. However, many individuals use psychoactive substances such as caffeine to enhance cognitive performance. The effects of acute exercise in comparison to caffeine on cognition remain unknown. Furthermore, caffeine use is associated with withdrawal symptoms upon cessation. Whether acute exercise can reduce withdrawal symptoms also remains unknown. The objectives of this study were to compare the effects of acute moderate intensity aerobic exercise to caffeine on working memory (WM) and caffeine withdrawal symptoms (CWS). In Phase I, non-caffeine (n = 29) and caffeine consumers (n = 30) completed a WM assessment, followed by acute exercise and caffeine. In Phase II, caffeine consumers (n = 25) from Phase I underwent the WM assessment and reported CWS following a 12-hour deprivation period. Acute moderate intensity aerobic exercise and caffeine (1.2 mg/kg) significantly improved WM accuracy and reduced CWS comparably. WM performance was not reduced following caffeine deprivation.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 906
Author(s):  
Agnieszka Mikłosz ◽  
Bartłomiej Łukaszuk ◽  
Adrian Chabowski ◽  
Jan Górski

Endothelial lipase (EL) is an enzyme capable of HDL phospholipids hydrolysis. Its action leads to a reduction in the serum high-density lipoprotein concentration, and thus, it exerts a pro-atherogenic effect. This study examines the impact of a single bout exercise on the gene and protein expression of the EL in skeletal muscles composed of different fiber types (the soleus—mainly type I, the red gastrocnemius—mostly IIA, and the white gastrocnemius—predominantly IIX fibers), as well as the diaphragm, and the heart. Wistar rats were subjected to a treadmill run: 1) t = 30 [min], V = 18 [m/min]; 2) t = 30 [min], V = 28 [m/min]; 3) t = 120 [min], V = 18 [m/min] (designated: M30, F30, and M120, respectively). We established EL expression in the total muscle homogenates in sedentary animals. Resting values could be ordered with the decreasing EL protein expression as follows: endothelium of left ventricle > diaphragm > red gastrocnemius > right ventricle > soleus > white gastrocnemius. Furthermore, we observed that even a single bout of exercise was capable of inducing changes in the mRNA and protein level of EL, with a clearer pattern observed for the former. After 30 min of running at either exercise intensity, the expression of EL transcript in all the cardiovascular components of muscles tested, except the soleus, was reduced in comparison to the respective sedentary control. The protein content of EL varied with the intensity and/or duration of the run in the studied whole tissue homogenates. The observed differences between EL expression in vascular beds of muscles may indicate the muscle-specific role of the lipase.


2011 ◽  
Vol 301 (3) ◽  
pp. R783-R790 ◽  
Author(s):  
Bradley J. Behnke ◽  
Robert B. Armstrong ◽  
Michael D. Delp

The influence of the sympathetic nervous system (SNS) upon vascular resistance is more profound in muscles comprised predominately of low-oxidative type IIB vs. high-oxidative type I fiber types. However, within muscles containing high-oxidative type IIA and IIX fibers, the role of the SNS on vasomotor tone is not well established. The purpose of this study was to examine the influence of sympathetic neural vasoconstrictor tone in muscles composed of different fiber types. In adult male rats, blood flow to the red and white portions of the gastrocnemius (GastRed and GastWhite, respectively) and the soleus muscle was measured pre- and postdenervation. Resistance arterioles from these muscles were removed, and dose responses to α1-phenylephrine or α2-clonidine adrenoreceptor agonists were determined with and without the vascular endothelium. Denervation resulted in a 2.7-fold increase in blood flow to the soleus and GastRed and an 8.7-fold increase in flow to the GastWhite. In isolated arterioles, α2-mediated vasoconstriction was greatest in GastWhite (∼50%) and less in GastRed (∼31%) and soleus (∼17%); differences among arterioles were abolished with the removal of the endothelium. There was greater sensitivity to α1-mediated vasoconstriction in the GastWhite and GastRed vs. the soleus, which was independent of whether the endothelium was present. These data indicate that 1) control of vascular resistance by the SNS in high-oxidative, fast-twitch muscle is intermediate to that of low-oxidative, fast-twitch and high-oxidative, slow-twitch muscles; and 2) the ability of the SNS to control blood flow to low-oxidative type IIB muscle appears to be mediated through postsynaptic α1- and α2-adrenoreceptors on the vascular smooth muscle.


1983 ◽  
Vol 3 (6) ◽  
pp. 1070-1076
Author(s):  
S M Landfear ◽  
D McMahon-Pratt ◽  
D F Wirth

The arrangement of developmentally regulated alpha- and beta-tubulin genes has been studied in the parasitic protozoan Leishmania enriettii by using Southern blot hybridization analysis. The alpha-tubulin genes occur in a tandem repeat whose monomeric unit may be represented by a 2-kilobase PstI fragment. Similarly, the beta-tubulin genes probably occur in a separate tandem repeat consisting of approximately 4-kilobase units unlinked to the alpha-tubulin repeats.


1993 ◽  
Vol 106 (1) ◽  
pp. 209-218 ◽  
Author(s):  
S.W. James ◽  
C.D. Silflow ◽  
P. Stroom ◽  
P.A. Lefebvre

A mutation in the alpha 1-tubulin gene of Chlamydomonas reinhardtii was isolated by using the amiprophos-methyl-resistant mutation apm1-18 as a background to select new mutants that showed increased resistance to the drug. The upA12 mutation caused twofold resistance to amiprophos-methyl and oryzalin, and twofold hypersensitivity to the microtubule-stabilizing drug taxol, suggesting that the mutation enhanced microtubule stability. The resistance mutation was semi-dominant and mapped to the same interval on linkage group III as the alpha 1-tubulin gene. Two-dimensional gel immunoblots of proteins in the mutant cells revealed two electrophoretically altered alpha-tubulin isoforms, one of which was acetylated and incorporated into microtubules in the axoneme. The mutant isoforms co-segregated with the drug-resistance phenotypes when mutant upA12 was backcrossed to wild-type cells. Two-dimensional gel analysis of in vitro translation products showed that the non-acetylated variant alpha-tubulin was a primary gene product. DNA sequence analysis of the alpha 1-tubulin genes from mutant and wild-type cells revealed a single missense mutation, which predicted a change in codon 24 from tyrosine in wild type to histidine in mutant upA12. This alteration in the predicted amino acid sequence corroborated the approximately +1 basic charge shift observed for the variant alpha-tubulins. The mutant allele of the alpha 1-tubulin gene was designated tua1-1.


Sign in / Sign up

Export Citation Format

Share Document