Ultrastructural changes of lung capillary endothelium in response to botulinum C2toxin

1997 ◽  
Vol 82 (2) ◽  
pp. 382-388 ◽  
Author(s):  
L. Ermert ◽  
H.-R. Duncker ◽  
H. Brückner ◽  
F. Grimminger ◽  
T. Hansen ◽  
...  

Ermert, L., H.-R. Duncker, H. Brückner, F. Grimminger, T. Hansen, R. Rössig, K. Aktories, and W. Seeger.Ultrastructural changes of lung capillary endothelium in response to botulinum C2toxin. J. Appl. Physiol. 82(2): 382–388, 1997.—The role of the endothelial cytoskeleton for the structural integrity of the pulmonary gas exchange area was probed with the use of Clostridium botulinumC2toxin. This agent causes selective loss of nonmuscle F-actin. In buffer-perfused rabbit lungs, vascular pressures were kept within physiological ranges. In different groups, low-dose [0.3 (C2,I)/0.6 (C2,II) ng/ml] and high-dose [10 (C2,I)/20 (C2,II) ng/ml] toxin were applicated into the buffer fluid; experiments were terminated after a total weight gain of either 1 or 7.5 g. Electron microscopy revealed extensive attenuations, undulations, and protrusions of the endothelial layer, suggestive of “remodeling” and “flowing” of the cell membrane in low C2toxin-treated lungs accompanied by few disruptions of the endothelial layer and edema formation. In addition, endothelial cells displayed vesiculation and bleb formation. Lungs that were exposed to high-toxin doses displayed marked attenuations of the endothelial layer in addition to large endothelial cell disruptions, which did not include interendothelial junctions. Interestingly, type II epithelial cells displayed fusion of lamellar bodies. Collectively, these data suggest that the actin microfilament system is instrumental in supporting endothelial cell membrane configuration and integrity and maintains the intimal barrier function of the lung microvasculature.

Toxins ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 284
Author(s):  
Hamza Isa ◽  
Gezina Ferreira ◽  
Jan Crafford ◽  
Christoffel Botha

Moraea pallida Bak. (yellow tulp) poisoning is the most important cardiac glycoside-induced intoxication in ruminants in South Africa. The toxic principle, 1α, 2α-epoxyscillirosidine, is a bufadienolide. To replace the use of sentient animals in toxicity testing, the aim of this study was to evaluate the cytotoxic effects of epoxyscillirosidine on rat embryonic cardiomyocytes (H9c2 cell line). This in vitro cell model can then be used in future toxin neutralization or toxico-therapy studies. Cell viability, evaluated with the methyl blue thiazol tetrazolium (MTT) assay, indicated a hormetic dose/concentration response, characterized by a biphasic low dose stimulation and high dose inhibition. Increased cell membrane permeability and leakage, as expected with necrotic cells, were demonstrated with the lactate dehydrogenase (LDH) assay. The LC50 was 382.68, 132.28 and 289.23 μM for 24, 48, and 72 h respectively. Numerous cytoplasmic vacuoles, karyolysis and damage to the cell membrane, indicative of necrosis, were observed at higher doses. Ultra-structural changes suggested that the cause of H9c2 cell death, subsequent to epoxyscillirosidine exposure, is necrosis, which is consistent with myocardial necrosis observed at necropsy. Based on the toxicity observed, and supported by ultra-structural findings, the H9c2 cell line could be a suitable in vitro model to evaluate epoxyscillirosidine neutralization or other therapeutic interventions in the future.


Author(s):  
M. Isaacson ◽  
M.L. Collins ◽  
M. Listvan

Over the past five years it has become evident that radiation damage provides the fundamental limit to the study of blomolecular structure by electron microscopy. In some special cases structural determinations at very low doses can be achieved through superposition techniques to study periodic (Unwin & Henderson, 1975) and nonperiodic (Saxton & Frank, 1977) specimens. In addition, protection methods such as glucose embedding (Unwin & Henderson, 1975) and maintenance of specimen hydration at low temperatures (Taylor & Glaeser, 1976) have also shown promise. Despite these successes, the basic nature of radiation damage in the electron microscope is far from clear. In general we cannot predict exactly how different structures will behave during electron Irradiation at high dose rates. Moreover, with the rapid rise of analytical electron microscopy over the last few years, nvicroscopists are becoming concerned with questions of compositional as well as structural integrity. It is important to measure changes in elemental composition arising from atom migration in or loss from the specimen as a result of electron bombardment.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Peng Chen ◽  
Hai Yan ◽  
Yaping Tian ◽  
Yiping Xun ◽  
Lili Shi ◽  
...  

1920 ◽  
Vol 32 (5) ◽  
pp. 533-546 ◽  
Author(s):  
Nathan Chandler Foot

1. The injection of a colloidal suspension, or sol, of carbon into the veins of a living animal, as recommended by McJunkin, furnishes an apparently reliable means of tracing the so called epithelioid cell of the pulmonary tubercle from its origin in the vascular endothelium to the lesion. 2. Experimental tubercles are formed in the lung, as in the liver, primarily by cells originating in the capillary endothelium. These cells are probably present in small numbers in the normal lung, lying free both in the alveolar wall and the air vesicles. In response to infection they proliferate in the capillary walls in the vicinity of the invading organisms, migrate in steadily increasing numbers, and, arriving at the site of the infection, further multiply and to some extent fuse to form the syncytia known as giant cells. 3. The epithelial cell takes no active part in the process; its proliferation tends to repair denuded surfaces and is regenerative rather than combative or phagocytic in nature. This cell is free from carbon and stains only diffusely with carmine, in contradistinction to the endothelial cell which readily takes up both pigments in granular form. 4. The cells of endothelial origin not only phagocytose tubercle bacilli, but carry them into the tissues, for example into lymph nodes, by way of the lymphatics, or into other lung lobules by way of the air passages, in which they are readily demonstrable.


1970 ◽  
Vol 6 (3) ◽  
pp. 679-700
Author(s):  
J. WOLFE

The oral apparatus of Tetrahymena pyriformis was isolated using a non-ionic detergent to disrupt the cell membrane. The mouth consists largely of basal bodies and microfilaments. Each basal body is attached to the mouth by a basal plate which is integrated into the meshwork of microfilaments that confers upon the oral apparatus its structural integrity. Each basal body is composed of 9 triplet microtubules. Two of the 3 tubules, subfibres ‘A’ and ‘B’ are composed of filamentous rows of globules with a spacing of 4.5nm. The third tubule, subfibre ‘C’, is only one-third the length of the basal body.


2021 ◽  
Vol 12 (2) ◽  
pp. 1272-1275
Author(s):  
Angu Bala Ganesh K S V ◽  
Sujeet Shekhar Sinha ◽  
Kesavi Durairaj ◽  
Abdul Sahabudeen K

Naphthalene is a bicyclic aromatic constituent commonly used in different domestic and marketable applications comprising soil fumigants, lavatory scent disks and mothballs. Accidentally, workers, children and animals are exposed to naphthalene mothballs, so there is a need to study the pathology behind this chemical toxicity. The current study was carried out to assess the ultra structural changes of basolateral amygdaloid nuclei in the Sprague Dawley rats brain in association to naphthalene toxicity. The toxicity model group was administered with naphthalene (200 and 400mg) using corn oil as a vehicle for 28 days. The post delayed toxicity of naphthalene high dose ingestion was also assessed in rats. After the experimental period, the brain tissue was processed to observe the ultra structural changes using a transmission electron microscope. The alterations in cell organelles, nuclei damage, mitochondrial swelling, chromatin condensation suggested naphthalene induced damage in the neurons of the basolateral amygdala of the brain in the toxicity model group. These experimental trials provide information about the alert of mothball usage in the home and identify risks linked with accidental exposure and misuse.


1995 ◽  
Vol 82 (6) ◽  
pp. 1053-1058 ◽  
Author(s):  
Paul A. Grabb ◽  
Mark R. Gilbert

✓ The authors investigated the effects of glioma cells and pharmacological agents on the permeability of an in vitro blood-brain barrier (BBB) to determine the following: 1) whether malignant glia increase endothelial cell permeability; 2) how glucocorticoids affect endothelial cell permeability in the presence and absence of malignant glia; and 3) whether inhibiting phospholipase A2, the enzyme that releases arachidonic acid from membrane phospholipids, would reduce any malignant glioma—induced increase in endothelial cell permeability. Primary cultures of rat brain capillary endothelium were grown on porous membranes; below the membrane, C6, 9L rat glioma, T98G human glioblastoma, or no cells (control) were cocultured. Dexamethasone (0.1 µM), bromophenacyl bromide (1.0 µM), a phospholipase A2 inhibitor, or nothing was added to culture media 72 hours prior to assaying the rat brain capillary endothelium permeability. Permeability was measured as the flux of radiolabeled sucrose across the rat brain capillary endothelium monolayer and then calculated as an effective permeability coefficient (Pe). When neither dexamethasone nor bromophenacyl bromide was present, C6 cells reduced the Pe significantly (p < 0.05), whereas 9L and T98G cells increased Pe significantly (p < 0.05) relative to rat brain capillary endothelium only (control). Dexamethasone reduced Pe significantly for all cell preparations (p < 0.05). The 9L and T98G cell preparations coincubated with dexamethasone had the lowest Pe of all cell preparations. The Pe was not affected in any cell preparation by coincubation with bromophenacyl bromide (p > 0.45). These in vitro BBB experiments showed that: 1) malignant glia, such as 9L and T98G cells, increase Pe whereas C6 cells probably provide an astrocytic influence by reducing Pe; 2) dexamethasone provided significant BBB “tightening” effects both in the presence and absence of glioma cells; 3) the in vivo BBB is actively made more permeable by malignant glia and not simply because of a lack of astrocytic induction; 4) tumor or endothelial phospholipase A2 activity is probably not responsible for glioma-induced increased in BBB permeability; and 5) this model is useful for testing potential agents for BBB protection and for studying the pathophysiology of tumor-induced BBB disruption.


2007 ◽  
Vol 292 (2) ◽  
pp. L378-L380 ◽  
Author(s):  
James C. Parker

Recent permeability studies comparing endothelial cell phenotypes derived from alveolar and extra-alveolar vessels have significant implications for interpreting the mechanisms of fluid homeostasis in the intact lung. These studies indicate that confluent monolayers of rat pulmonary microvascular endothelial cells had a hydraulic conductance ( Lp) that was only 5% and a transendothelial flux rate for 72-kDa dextran only 9% of values determined for rat pulmonary artery endothelial cell monolayers. On the basis of previous studies partitioning the filtration coefficients between alveolar and extra-alveolar vascular segments in rat lungs and previous studies of lymph albumin fluxes and permeability, the contribution of the alveolar capillary segment to total albumin flux in lymph was estimated to be less than 10%. In addition, the Starling safety factors against the edema calculated for the alveolar capillaries are quite different from those estimated for whole lung. Estimates of the edema safety factor due to increased filtration across the alveolar capillary wall based on the low Lp indicate it is quantitatively the greatest safety factor, although it would be a minor safety factor for extra-alveolar vessels. Also, a markedly higher effective protein osmotic absorptive force for plasma proteins must occur in the capillaries relative to extra-alveolar vessels. The lower Lp for alveolar capillaries also has implications for the sequence of hydrostatic edema formation, and it also may have a role in preventing exercise-induced alveolar flooding.


Sign in / Sign up

Export Citation Format

Share Document