scholarly journals Expanded prediction equations of human sweat loss and water needs

2009 ◽  
Vol 107 (2) ◽  
pp. 379-388 ◽  
Author(s):  
R. R. Gonzalez ◽  
S. N. Cheuvront ◽  
S. J. Montain ◽  
D. A. Goodman ◽  
L. A. Blanchard ◽  
...  

The Institute of Medicine expressed a need for improved sweating rate (ṁsw) prediction models that calculate hourly and daily water needs based on metabolic rate, clothing, and environment. More than 25 years ago, the original Shapiro prediction equation (OSE) was formulated as ṁsw (g·m−2·h−1) = 27.9· Ereq·( Emax)−0.455, where Ereq is required evaporative heat loss and Emax is maximum evaporative power of the environment; OSE was developed for a limited set of environments, exposures times, and clothing systems. Recent evidence shows that OSE often overpredicts fluid needs. Our study developed a corrected OSE and a new ṁsw prediction equation by using independent data sets from a wide range of environmental conditions, metabolic rates (rest to ≤450 W/m2), and variable exercise durations. Whole body sweat losses were carefully measured in 101 volunteers (80 males and 21 females; >500 observations) by using a variety of metabolic rates over a range of environmental conditions (ambient temperature, 15–46°C; water vapor pressure, 0.27–4.45 kPa; wind speed, 0.4–2.5 m/s), clothing, and equipment combinations and durations (2–8 h). Data are expressed as grams per square meter per hour and were analyzed using fuzzy piecewise regression. OSE overpredicted sweating rates ( P < 0.003) compared with observed ṁsw. Both the correction equation (OSEC), ṁsw = 147·exp (0.0012·OSE), and a new piecewise (PW) equation, ṁsw = 147 + 1.527· Ereq − 0.87· Emax were derived, compared with OSE, and then cross-validated against independent data (21 males and 9 females; >200 observations). OSEC and PW were more accurate predictors of sweating rate (58 and 65% more accurate, P < 0.01) and produced minimal error (standard error estimate < 100 g·m−2·h−1) for conditions both within and outside the original OSE domain of validity. The new equations provide for more accurate sweat predictions over a broader range of conditions with applications to public health, military, occupational, and sports medicine settings.

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4743
Author(s):  
Eleni Kaplani ◽  
Socrates Kaplanis

PV temperature significantly affects the module’s power output and final system yield, and its accurate prediction can serve the forecasting of PV power output, smart grid operations, online PV diagnostics and dynamic predictive management of Building Integrated Photovoltaic (BIPV) systems. This paper presents a dynamic PV temperature prediction model based on transient Energy Balance Equations, incorporating theoretical expressions for all heat transfer processes, natural convection, forced convection, conduction and radiation exchanges between both module sides and the environment. The algorithmic approach predicts PV temperature at the centre of the cell, the back and the front glass cover with fast convergence and serves the PV power output prediction. The simulation model is robust, predicting PV temperature with high accuracy at any environmental conditions, PV inclination, orientation, wind speed and direction, and mounting configurations, free-standing and BIPV. These, alongside its theoretical basis, ensure the model’s wide applicability and clear advantage over existing PV temperature prediction models. The model is validated for a wide range of environmental conditions, PV geometries and mounting configurations with experimental data from a sun-tracking, a fixed angle PV and a BIPV system. The deviation between predicted and measured power output for the fixed-angle and the sun-tracking PV systems was estimated at −1.4% and 1.9%, respectively. The median of the temperature difference between predicted and measured values was as low as 0.5 °C for the sun-tracking system, and for all cases, the predicted temperature profiles were closely matching the measured profiles. The PV temperature and power output predicted by this model are compared to the results produced by other well-known PV temperature models, illustrating its high predictive capacity, accuracy and robustness.


Author(s):  
Gabriela Martínez de la Escalera ◽  
Angel M. Segura ◽  
Carla Kruk ◽  
Badih Ghattas ◽  
Frederick M. Cohan ◽  
...  

Addressing the ecological and evolutionary processes underlying biodiversity patterns is essential to identify the mechanisms shaping community structure and function. In bacteria, the formation of new ecologically distinct populations (ecotypes) is proposed as one of the main drivers of diversification. New ecotypes arise when mutations in key functional genes or acquisition of new metabolic pathways by horizontal gene transfer allow the population to exploit new resources, permitting their coexistence with the parental population. We previously reported the presence of microcystin-producing organisms of the Microcystis aeruginosa complex (toxic MAC) through an 800 km environmental gradient ranging from freshwater to estuarine-marine waters in South America. We hypothesize that the success of toxic MAC in such a gradient is due to the existence of very closely related populations that are ecologically distinct (ecotypes), each specialized to a specific arrangement of environmental variables. Here, we analyzed toxic MAC genetic diversity through qPCR and high-resolution melting analysis (HRMA) of a functional gene ( mcyJ , microcystin synthetase cluster). We explored the variability of the mcyJ gene along the environmental gradient by multivariate classification and regression trees ( m CART). Six groups of mcyJ genotypes were distinguished and associated with different combinations of water temperature, conductivity and turbidity. We propose that each mcyJ variant associated to a defined environmental condition is an ecotype (or species) whose relative abundances vary according to their fitness in the local environment. This mechanism would explain the success of toxic MAC in such a wide array of environmental conditions. Importance Organisms of the Microcystis aeruginosa Complex form harmful algal blooms (HABs) in nutrient-rich water bodies worldwide. MAC HABs are difficult to manage owing to the production of potent toxins (microcystins) that resist water treatment. Besides, the role of microcystins in the ecology of MAC organisms is still elusive, meaning that the environmental conditions driving the toxicity of the bloom are not clear. Furthermore, the lack of coherence between morphology-based and genomic-based species classification makes it difficult to draw sound conclusions about when and where each member species of the MAC will dominate the bloom. Here, we propose that the diversification process and success of toxic MAC in a wide range of waterbodies involves the generation of ecotypes, each specialized in a particular niche, whose relative abundance varies according to its fitness in the local environment. This knowledge can improve the generation of accurate prediction models of MAC growth and toxicity, helping to prevent human and animal intoxication.


1997 ◽  
Vol 83 (3) ◽  
pp. 860-866 ◽  
Author(s):  
William A. Latzka ◽  
Michael N. Sawka ◽  
Scott J. Montain ◽  
Gary S. Skrinar ◽  
Roger A. Fielding ◽  
...  

Latzka, William A., Michael N. Sawka, Scott J. Montain, Gary S. Skrinar, Roger A. Fielding, Ralph P. Matott, and Kent B. Pandolf.Hyperhydration: thermoregulatory effects during compensable exercise-heat stress. J. Appl. Physiol. 83(3): 860–866, 1997.—This study examined the effects of hyperhydration on thermoregulatory responses during compensable exercise-heat stress. The general approach was to determine whether 1-h preexercise hyperhydration [29.1 ml/kg lean body mass; with or without glycerol (1.2 g/kg lean body mass)] would improve sweating responses and reduce core temperature during exercise. During these experiments, the evaporative heat loss required (Ereq = 293 W/m2) to maintain steady-state core temperature was less than the maximal capacity (Emax = 462 W/m2) of the climate for evaporative heat loss (Ereq/Emax= 63%). Eight heat-acclimated men completed five trials: euhydration, glycerol hyperhydration, and water hyperhydration both with and without rehydration (replace sweat loss during exercise). During exercise in the heat (35°C, 45% relative humidity), there was no difference between hyperhydration methods for increasing total body water (∼1.5 liters). Compared with euhydration, hyperhydration did not alter core temperature, skin temperature, whole body sweating rate, local sweating rate, sweating threshold temperature, sweating sensitivity, or heart rate responses. Similarly, no difference was found between water and glycerol hyperhydration for these physiological responses. These data demonstrate that hyperhydration provides no thermoregulatory advantage over the maintenance of euhydration during compensable exercise-heat stress.


2000 ◽  
Vol 39 (05) ◽  
pp. 127-132 ◽  
Author(s):  
Nicole Sieweke ◽  
K. H. Bohuslavizki ◽  
W. U. Kampen ◽  
M. Zuhayra ◽  
M. Clausen ◽  
...  

Summary Aim of this study was to validate a recently introduced new and easy-to-perform method for quantifying bone uptake of Tc-99m-labelled diphosphonate in a routine clinical setting and to establish a normal data base for bone uptake depending on age and gender. Methods: In 49 women (14-79 years) and 47 men (6-89 years) with normal bone scans as well as in 49 women (33-81 years) and 37 men (27-88 years) with metastatic bone disease whole-body bone scans were acquired at 3 min and 3-4 hours p.i. to calculate bone uptake after correction for both urinary excretion and soft tissue retention. Results: Bone uptake values of various age-related subgroups showed no significant differences between men and women (p >0.05 ). Furthermore, no differences could be proven between age-matched subgroups of normals and patients with less than 10 metastatic bone lesions, while patients with wide-spread bone metastases revealed significantly increased uptake values. In both men and women highest bone uptake was obtained (p <0.05 ) in subjects younger than 20 years with active epiphyseal growth plates. In men, bone uptake slowly decreased with age up to 60 years and then showed a tendency towards increasing uptake values. In women, the mean uptake reached a minimun in the decade 20-29 years and then slowly increased with a positive linear correlation of age and uptake in subjects older than 55 years (r = 0.57). Conclusion: Since the results proposed in this study are in good agreement with data from literature, the new method used for quantification could be validated in a large number of patients. Furthermore, age- and sexrelated normal bone uptake values of Tc-99m-HDP covering a wide range of age could be presented for this method as a basis for further studies on bone uptake.


2020 ◽  
Author(s):  
Sina Faizollahzadeh Ardabili ◽  
Amir Mosavi ◽  
Pedram Ghamisi ◽  
Filip Ferdinand ◽  
Annamaria R. Varkonyi-Koczy ◽  
...  

Several outbreak prediction models for COVID-19 are being used by officials around the world to make informed-decisions and enforce relevant control measures. Among the standard models for COVID-19 global pandemic prediction, simple epidemiological and statistical models have received more attention by authorities, and they are popular in the media. Due to a high level of uncertainty and lack of essential data, standard models have shown low accuracy for long-term prediction. Although the literature includes several attempts to address this issue, the essential generalization and robustness abilities of existing models needs to be improved. This paper presents a comparative analysis of machine learning and soft computing models to predict the COVID-19 outbreak as an alternative to SIR and SEIR models. Among a wide range of machine learning models investigated, two models showed promising results (i.e., multi-layered perceptron, MLP, and adaptive network-based fuzzy inference system, ANFIS). Based on the results reported here, and due to the highly complex nature of the COVID-19 outbreak and variation in its behavior from nation-to-nation, this study suggests machine learning as an effective tool to model the outbreak. This paper provides an initial benchmarking to demonstrate the potential of machine learning for future research. Paper further suggests that real novelty in outbreak prediction can be realized through integrating machine learning and SEIR models.


2021 ◽  
Vol 15 ◽  
Author(s):  
Alhassan Alkuhlani ◽  
Walaa Gad ◽  
Mohamed Roushdy ◽  
Abdel-Badeeh M. Salem

Background: Glycosylation is one of the most common post-translation modifications (PTMs) in organism cells. It plays important roles in several biological processes including cell-cell interaction, protein folding, antigen’s recognition, and immune response. In addition, glycosylation is associated with many human diseases such as cancer, diabetes and coronaviruses. The experimental techniques for identifying glycosylation sites are time-consuming, extensive laboratory work, and expensive. Therefore, computational intelligence techniques are becoming very important for glycosylation site prediction. Objective: This paper is a theoretical discussion of the technical aspects of the biotechnological (e.g., using artificial intelligence and machine learning) to digital bioinformatics research and intelligent biocomputing. The computational intelligent techniques have shown efficient results for predicting N-linked, O-linked and C-linked glycosylation sites. In the last two decades, many studies have been conducted for glycosylation site prediction using these techniques. In this paper, we analyze and compare a wide range of intelligent techniques of these studies from multiple aspects. The current challenges and difficulties facing the software developers and knowledge engineers for predicting glycosylation sites are also included. Method: The comparison between these different studies is introduced including many criteria such as databases, feature extraction and selection, machine learning classification methods, evaluation measures and the performance results. Results and conclusions: Many challenges and problems are presented. Consequently, more efforts are needed to get more accurate prediction models for the three basic types of glycosylation sites.


2021 ◽  
Vol 11 (7) ◽  
pp. 3209
Author(s):  
Karla R. Borba ◽  
Didem P. Aykas ◽  
Maria I. Milani ◽  
Luiz A. Colnago ◽  
Marcos D. Ferreira ◽  
...  

Portable spectrometers are promising tools that can be an alternative way, for various purposes, of analyzing food quality, such as monitoring in a few seconds the internal quality during fruit ripening in the field. A portable/handheld (palm-sized) near-infrared (NIR) spectrometer (Neospectra, Si-ware) with spectral range of 1295–2611 nm, equipped with a micro-electro-mechanical system (MEMs), was used to develop prediction models to evaluate tomato quality attributes non-destructively. Soluble solid content (SSC), fructose, glucose, titratable acidity (TA), ascorbic, and citric acid contents of different types of fresh tomatoes were analyzed with standard methods, and those values were correlated to spectral data by partial least squares regression (PLSR). Fresh tomato samples were obtained in 2018 and 2019 crops in commercial production, and four fruit types were evaluated: Roma, round, grape, and cherry tomatoes. The large variation in tomato types and having the fruits from distinct years resulted in a wide range in quality parameters enabling robust PLSR models. Results showed accurate prediction and good correlation (Rpred) for SSC = 0.87, glucose = 0.83, fructose = 0.87, ascorbic acid = 0.81, and citric acid = 0.86. Our results support the assertion that a handheld NIR spectrometer has a high potential to simultaneously determine several quality attributes of different types of tomatoes in a practical and fast way.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Louise C Archer ◽  
Stephen A Hutton ◽  
Luke Harman ◽  
W Russell Poole ◽  
Patrick Gargan ◽  
...  

Abstract Metabolic rates vary hugely within and between populations, yet we know relatively little about factors causing intraspecific variation. Since metabolic rate determines the energetic cost of life, uncovering these sources of variation is important to understand and forecast responses to environmental change. Moreover, few studies have examined factors causing intraspecific variation in metabolic flexibility. We explore how extrinsic environmental conditions and intrinsic factors contribute to variation in metabolic traits in brown trout, an iconic and polymorphic species that is threatened across much of its native range. We measured metabolic traits in offspring from two wild populations that naturally show life-history variation in migratory tactics (one anadromous, i.e. sea-migratory, one non-anadromous) that we reared under either optimal food or experimental conditions of long-term food restriction (lasting between 7 and 17 months). Both populations showed decreased standard metabolic rates (SMR—baseline energy requirements) under low food conditions. The anadromous population had higher maximum metabolic rate (MMR) than the non-anadromous population, and marginally higher SMR. The MMR difference was greater than SMR and consequently aerobic scope (AS) was higher in the anadromous population. MMR and AS were both higher in males than females. The anadromous population also had higher AS under low food compared to optimal food conditions, consistent with population-specific effects of food restriction on AS. Our results suggest different components of metabolic rate can vary in their response to environmental conditions, and according to intrinsic (population-background/sex) effects. Populations might further differ in their flexibility of metabolic traits, potentially due to intrinsic factors related to life history (e.g. migratory tactics). More comparisons of populations/individuals with divergent life histories will help to reveal this. Overall, our study suggests that incorporating an understanding of metabolic trait variation and flexibility and linking this to life history and demography will improve our ability to conserve populations experiencing global change.


Healthcare ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 778
Author(s):  
Ann-Rong Yan ◽  
Indira Samarawickrema ◽  
Mark Naunton ◽  
Gregory M. Peterson ◽  
Desmond Yip ◽  
...  

Venous thromboembolism (VTE) is a significant cause of mortality in patients with lung cancer. Despite the availability of a wide range of anticoagulants to help prevent thrombosis, thromboprophylaxis in ambulatory patients is a challenge due to its associated risk of haemorrhage. As a result, anticoagulation is only recommended in patients with a relatively high risk of VTE. Efforts have been made to develop predictive models for VTE risk assessment in cancer patients, but the availability of a reliable predictive model for ambulate patients with lung cancer is unclear. We have analysed the latest information on this topic, with a focus on the lung cancer-related risk factors for VTE, and risk prediction models developed and validated in this group of patients. The existing risk models, such as the Khorana score, the PROTECHT score and the CONKO score, have shown poor performance in external validations, failing to identify many high-risk individuals. Some of the newly developed and updated models may be promising, but their further validation is needed.


Sign in / Sign up

Export Citation Format

Share Document