Comparison of elastic properties and contractile responses of isolated airway segments from mature and immature rabbits

2003 ◽  
Vol 95 (1) ◽  
pp. 265-271 ◽  
Author(s):  
R. Ramchandani ◽  
X. Shen ◽  
S. J. Gunst ◽  
R. S. Tepper

Immature rabbits have greater maximal airway narrowing with bronchoconstriction in vivo compared with mature animals. As isolated immature lungs have a lower shear modulus, it is unclear whether the greater airway narrowing in the immature lung is secondary to less tethering between the airways and the lung parenchyma or to differences in the mechanical properties of the mature and immature airways. In the present study, we compared the mechanical properties of fluid-filled, isolated, intraparenchymal airway segments of the same generation from mature and immature rabbits. Stimulation with ACh resulted in greater airway narrowing in immature than mature bronchi. The immature bronchi were more compliant, had a lower resting airway volume, and were more collapsible compared with the mature bronchi. When the airways were contracted with ACh under isovolume conditions, the immature bronchi generated greater active pressure, and they were more sensitive to ACh than were mature bronchi. Our results suggest that maturational differences in the structure and function of the airways in the absence of the lung parenchyma can account for the greater maximal narrowing of immature than mature airways in vivo.

1999 ◽  
Vol 87 (2) ◽  
pp. 711-714 ◽  
Author(s):  
Robert S. Tepper ◽  
Barry Wiggs ◽  
Susan J. Gunst ◽  
Peter D. Paré

Maximal airway narrowing during bronchoconstriction is greater in immature than in mature rabbits. At a given transpulmonary pressure (Pl), the lung parenchyma surrounding the airway resists local deformation and provides a load that opposes airway smooth muscle shortening. We hypothesized that the force required to produce lung parenchymal deformation, quantified by the shear modulus, is lower in immature rabbit lungs. The shear modulus and the bulk modulus were measured in isolated mature ( n = 8; 6 mo) and immature ( n = 9; 3 wk) rabbit lungs at Pl of 2, 4, 6, 8, and 10 cmH2O. The bulk modulus increased with increasing Pl for mature and immature lungs; however, there was no significant difference between the groups. The shear modulus was lower for the immature than the mature lungs ( P < 0.025), progressively increasing with increasing Pl( P < 0.001) for both groups, and there was no difference between the slopes for shear modulus vs. Pl for the mature and the immature lungs. The mean value of the shear modulus for mature and immature rabbit lungs at Pl = 6 cmH2O was 4.5 vs. 3.8 cmH2O. We conclude that the shear modulus is less in immature than mature rabbit lungs. This small maturational difference in the shear modulus probably does not account for the greater airway narrowing in the immature lung, unless its effect is coupled with a relatively thicker and more compliant airway wall in the immature animal.


Author(s):  
K.E. Krizan ◽  
J.E. Laffoon ◽  
M.J. Buckley

With increase use of tissue-integrated prostheses in recent years it is a goal to understand what is happening at the interface between haversion bone and bulk metal. This study uses electron microscopy (EM) techniques to establish parameters for osseointegration (structure and function between bone and nonload-carrying implants) in an animal model. In the past the interface has been evaluated extensively with light microscopy methods. Today researchers are using the EM for ultrastructural studies of the bone tissue and implant responses to an in vivo environment. Under general anesthesia nine adult mongrel dogs received three Brånemark (Nobelpharma) 3.75 × 7 mm titanium implants surgical placed in their left zygomatic arch. After a one year healing period the animals were injected with a routine bone marker (oxytetracycline), euthanized and perfused via aortic cannulation with 3% glutaraldehyde in 0.1M cacodylate buffer pH 7.2. Implants were retrieved en bloc, harvest radiographs made (Fig. 1), and routinely embedded in plastic. Tissue and implants were cut into 300 micron thick wafers, longitudinally to the implant with an Isomet saw and diamond wafering blade [Beuhler] until the center of the implant was reached.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kristi Powers ◽  
Raymond Chang ◽  
Justin Torello ◽  
Rhonda Silva ◽  
Yannick Cadoret ◽  
...  

AbstractEchocardiography is a widely used and clinically translatable imaging modality for the evaluation of cardiac structure and function in preclinical drug discovery and development. Echocardiograms are among the first in vivo diagnostic tools utilized to evaluate the heart due to its relatively low cost, high throughput acquisition, and non-invasive nature; however lengthy manual image analysis, intra- and inter-operator variability, and subjective image analysis presents a challenge for reproducible data generation in preclinical research. To combat the image-processing bottleneck and address both variability and reproducibly challenges, we developed a semi-automated analysis algorithm workflow to analyze long- and short-axis murine left ventricle (LV) ultrasound images. The long-axis B-mode algorithm executes a script protocol that is trained using a reference library of 322 manually segmented LV ultrasound images. The short-axis script was engineered to analyze M-mode ultrasound images in a semi-automated fashion using a pixel intensity evaluation approach, allowing analysts to place two seed-points to triangulate the local maxima of LV wall boundary annotations. Blinded operator evaluation of the semi-automated analysis tool was performed and compared to the current manual segmentation methodology for testing inter- and intra-operator reproducibility at baseline and after a pharmacologic challenge. Comparisons between manual and semi-automatic derivation of LV ejection fraction resulted in a relative difference of 1% for long-axis (B-mode) images and 2.7% for short-axis (M-mode) images. Our semi-automatic workflow approach reduces image analysis time and subjective bias, as well as decreases inter- and intra-operator variability, thereby enhancing throughput and improving data quality for pre-clinical in vivo studies that incorporate cardiac structure and function endpoints.


2008 ◽  
Vol 74 (24) ◽  
pp. 7821-7823 ◽  
Author(s):  
Kai Linke ◽  
Nagarajan Periasamy ◽  
Matthias Ehrmann ◽  
Roland Winter ◽  
Rudi F. Vogel

ABSTRACT High hydrostatic pressure (HHP) is suggested to influence the structure and function of membranes and/or integrated proteins. We demonstrate for the first time HHP-induced dimer dissociation of membrane proteins in vivo with Vibrio cholerae ToxR variants in Escherichia coli reporter strains carrying ctx::lacZ fusions. Dimerization ceased at 20 to 50 MPa depending on the nature of the transmembrane segments rather than on changes in the ToxR lipid bilayer environment.


Author(s):  
Daniel H. Cortes ◽  
Lachlan J. Smith ◽  
Sung M. Moon ◽  
Jeremy F. Magland ◽  
Alexander C. Wright ◽  
...  

Intervertebral disc degeneration is characterized by a progressive cascade of structural, biochemical and biomechanical changes affecting the annulus fibrosus (AF), nucleus pulposus (NP) and end plates (EP). These changes are considered to contribute to the onset of back pain. It has been shown that mechanical properties of the AF and NP change significantly with degeneration [1,2]. Therefore, mechanical properties have the potential to serve as a biomarker for diagnosis of disc degeneration. Currently, disc degeneration is diagnosed based on the detection of structural and compositional changes using MRI, X-ray, discography and other imaging techniques. These methods, however, do not measure directly the mechanical properties of the extracellular matrix of the disc. Magnetic Resonance Elastography (MRE) is a technique that has been used to measure in vivo mechanical properties of soft tissue by applying a mechanical vibration and measuring displacements with a motion-sensitized MRI pulse sequence [3]. The mechanical properties (e.g., the shear modulus) are calculated from the displacement field using an inverse method. Since the applied displacements are in the order of few microns, fibers may not be stretched enough to remove crimping. Therefore, it is unknown if the anisotropy of the AF due to the contribution of the fibers is detectable using MRE. The objective of this study is twofold: to measure shear properties of AF in different orientations to determine the degree of AF anisotropy observable by MRE, and to identify the contribution of different AF constituents to the measured shear modulus by applying different biochemical treatments.


2001 ◽  
pp. 1-7 ◽  
Author(s):  
Joseph D. Fenstermacher ◽  
Tavarekere Nagaraja ◽  
Kenneth R. Davies

mSystems ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Jingwei Cai ◽  
Robert G. Nichols ◽  
Imhoi Koo ◽  
Zachary A. Kalikow ◽  
Limin Zhang ◽  
...  

ABSTRACTThe gut microbiota is susceptible to modulation by environmental stimuli and therefore can serve as a biological sensor. Recent evidence suggests that xenobiotics can disrupt the interaction between the microbiota and host. Here, we describe an approach that combinesin vitromicrobial incubation (isolated cecal contents from mice), flow cytometry, and mass spectrometry- and1H nuclear magnetic resonance (NMR)-based metabolomics to evaluate xenobiotic-induced microbial toxicity. Tempol, a stabilized free radical scavenger known to remodel the microbial community structure and functionin vivo, was studied to assess its direct effect on the gut microbiota. The microbiota was isolated from mouse cecum and was exposed to tempol for 4 h under strict anaerobic conditions. The flow cytometry data suggested that short-term tempol exposure to the microbiota is associated with disrupted membrane physiology as well as compromised metabolic activity. Mass spectrometry and NMR metabolomics revealed that tempol exposure significantly disrupted microbial metabolic activity, specifically indicated by changes in short-chain fatty acids, branched-chain amino acids, amino acids, nucleotides, glucose, and oligosaccharides. In addition, a mouse study with tempol (5 days gavage) showed similar microbial physiologic and metabolic changes, indicating that thein vitroapproach reflectedin vivoconditions. Our results, through evaluation of microbial viability, physiology, and metabolism and a comparison ofin vitroandin vivoexposures with tempol, suggest that physiologic and metabolic phenotyping can provide unique insight into gut microbiota toxicity.IMPORTANCEThe gut microbiota is modulated physiologically, compositionally, and metabolically by xenobiotics, potentially causing metabolic consequences to the host. We recently reported that tempol, a stabilized free radical nitroxide, can exert beneficial effects on the host through modulation of the microbiome community structure and function. Here, we investigated a multiplatform phenotyping approach that combines high-throughput global metabolomics with flow cytometry to evaluate the direct effect of tempol on the microbiota. This approach may be useful in deciphering how other xenobiotics directly influence the microbiota.


2017 ◽  
Vol 1 (3) ◽  
pp. 100-111
Author(s):  
Anup D. Pant ◽  
Larry Kagemann ◽  
Joel S. Schuman ◽  
Ian A. Sigal ◽  
Rouzbeh Amini

Aim/Purpose: Previous studies have shown that the trabecular meshwork (TM) is mechanically stiffer in glaucomatous eyes as compared to normal eyes. It is believed that elevated TM stiffness increases resistance to the aqueous humor outflow, producing increased intraocular pressure (IOP).It would be advantageous to measure TM mechanical properties in vivo, as these properties are believed to play an important role in the pathophysiology of glaucoma and could be useful for identifying potential risk factors.  The purpose of this study was to develop a method to estimate in-vivo TM mechanical properties using clinically available exams and computer simulations.Design: Inverse finite element simulationMethods: A finite element model of the TM was constructed from optical coherence tomography (OCT) images of a healthy volunteer before and during IOP elevation. An axisymmetric model of the TM was then constructed. Images of the TM at a baseline IOP level of 11, and elevated level of 23 mmHg were treated as the undeformed and deformed configurations, respectively. An inverse modeling technique was subsequently used to estimate the TM shear modulus (G). An optimization technique was used to find the shear modulus that minimized the difference between Schlemm’s canal area in the in-vivo images and simulations.Results: Upon completion of inverse finite element modeling, the simulated area of the Schlemm’s canal changed from 8,889 μm2 to 2,088 μm2, similar to the experimentally measured areal change of the canal (from 8,889 μm2 to 2,100 μm2). The calculated value of shear modulus was found to be 1.93 kPa,  (implying an approximate Young’s modulus of 5.75 kPa), which is consistent with previous ex-vivo measurements.Conclusion: The combined imaging and computational simulation technique provides a unique approach to calculate the mechanical properties of the TM in vivo without any surgical intervention. Quantification of such mechanical properties will help us examine the mechanistic role of TM biomechanics in the regulation of IOP in healthy and glaucomatous eyes. 


Sign in / Sign up

Export Citation Format

Share Document