A Modeling Study Suggests Complementary Roles for GABAA and NMDA Receptors and the SK Channel in Regulating the Firing Pattern in Midbrain Dopamine Neurons

2004 ◽  
Vol 91 (1) ◽  
pp. 346-357 ◽  
Author(s):  
Alexander O. Komendantov ◽  
Olena G. Komendantova ◽  
Steven W. Johnson ◽  
Carmen C. Canavier

Midbrain dopaminergic (DA) neurons in vivo exhibit two major firing patterns: single-spike firing and burst firing. The firing pattern expressed is dependent on both the intrinsic properties of the neurons and their excitatory and inhibitory synaptic inputs. Experimental data suggest that the activation of N-methyl-d-aspartate (NMDA) and GABAA receptors is a crucial contributor to the initiation and suppression of burst firing, respectively, and that blocking Ca2+-activated potassium SK channels can facilitate burst firing. A multi-compartmental model of a DA neuron with a branching structure was developed and calibrated based on in vitro experimental data to explore the effects of different levels of activation of NMDA and GABAA receptors as well as the modulation of the SK current on the firing activity. The simulated tonic activation of GABAA receptors was calibrated by taking into account the difference in the electrotonic properties in vivo versus in vitro. Although NMDA-evoked currents are required for burst generation in the model, currents evoked by GABAA-receptor activation can also regulate the firing pattern. For example, the model predicts that increasing the level of NMDA receptor activation can produce excessive depolarization that prevents burst firing, but a concurrent increase in the activation of GABAA receptors can restore burst firing. Another prediction of the model is that blocking the SK channel current in vivo will facilitate bursting, but not as robustly as blocking the GABAA receptors.

2018 ◽  
Vol 119 (1) ◽  
pp. 84-95 ◽  
Author(s):  
Christopher Knowlton ◽  
Sylvie Kutterer ◽  
Jochen Roeper ◽  
Carmen C. Canavier

Burst firing in medial substantia nigra (mSN) dopamine (DA) neurons has been selectively linked to novelty-induced exploration behavior in mice. Burst firing in mSN DA neurons, in contrast to lateral SN DA neurons, requires functional ATP-sensitive potassium (K-ATP) channels both in vitro and in vivo. However, the precise role of K-ATP channels in promoting burst firing is unknown. We show experimentally that L-type calcium channel activity in mSN DA neurons enhances open probability of K-ATP channels. We then generate a mathematical model to study the role of Ca2+ dynamics driving K-ATP channel function in mSN DA neurons during bursting. In our model, Ca2+ influx leads to local accumulation of ADP due to Ca-ATPase activity, which in turn activates K-ATP channels. If K-ATP channel activation reaches levels sufficient to terminate spiking, rhythmic bursting occurs. The model explains the experimental observation that, in vitro, coapplication of NMDA and a selective K-ATP channel opener, NN414, is required to elicit bursting as follows. Simulated NMDA receptor activation increases the firing rate and the rate of Ca2+ influx, which increases the activation of K-ATP. The model suggests that additional sources of hyperpolarization, such as GABAergic synaptic input, are recruited in vivo for burst termination or rebound burst discharge. The model predicts that NN414 increases the sensitivity of the K-ATP channel to ADP, promoting burst firing in vitro, and that that high levels of Ca2+ buffering, as might be expected in the calbindin-positive SN DA neuron subpopulation, promote rhythmic bursting pattern, consistent with experimental observations in vivo. NEW & NOTEWORTHY Recently identified distinct subpopulations of midbrain dopamine neurons exhibit differences in their two primary activity patterns in vivo: tonic (single spike) firing and phasic bursting. This study elucidates the biophysical basis of bursts specific to dopamine neurons in the medial substantia nigra, enabled by ATP-sensitive K+ channels and necessary for novelty-induced exploration. A better understanding of how dopaminergic signaling differs between subpopulations may lead to therapeutic strategies selectively targeted to specific subpopulations.


2010 ◽  
Vol 104 (3) ◽  
pp. 1726-1735 ◽  
Author(s):  
Kjartan F. Herrik ◽  
Palle Christophersen ◽  
Paul D. Shepard

Dopamine (DA) neurons are autonomous pacemakers that occasionally fire bursts of action potentials, discharge patterns thought to reflect tonic and phasic DA signaling, respectively. Pacemaker activity depends on the concerted and cyclic interplay between intrinsic ion channels with small conductance Ca2+-activated K+ (SK) channels playing an important role. Bursting activity is synaptically initiated but neither the transmitters nor the specific ion conductances involved have been definitively identified. Physiological and pharmacological regulation of SK channel Ca2+ sensitivity has recently been demonstrated and could represent a powerful means of modulating the expression of tonic/phasic signaling in DA neurons in vivo. To test this premise, we characterized the effects of intravenous administration of the novel positive and negative SK channel modulators NS309 and NS8593, respectively, on the spontaneous activity of substantia nigra pars compacta DA neurons in anesthetized C57BL/6 mice. NS309, dose-dependently decreased DA cell firing rate, increased the proportion of regular firing cells, and eventually stopped spontaneous firing. By contrast, systemic administration of the negative SK channel modulator NS8593 increased firing rate and shifted the pattern toward increased irregularity/bursting; an effect similar to local application of the pore blocking peptide apamin. The altered firing patterns resulting from inhibiting SK currents persisted independently of changes in firing rates induced by administration of DA autoreceptor agonists/antagonists. We conclude that pharmacological modulation of SK channel Ca2+-sensitivity represents a powerful mechanism for switching DA neuron firing activity between tonic and phasic signaling modalities in vivo.


2005 ◽  
Vol 94 (5) ◽  
pp. 3516-3522 ◽  
Author(s):  
Wei-Xing Shi

Using spectral analysis and in vivo single-unit recording in rats, the present study revealed a pronounced slow oscillation (SO) in the firing activity of about half the dopamine (DA) neurons recorded in the ventral tegmental area. DA neurons in this group tended to fire repetitive spike clusters, making them appear to be rhythmic bursting cells. However, only some of these burst-like events met the traditional “80/160 ms” burst criteria entirely. The observation that the SO could be found in nonbursting DA cells, occurred at frequencies different from those of bursts, and persisted after bursts were digitally removed from spike trains further supports the suggestion that the SO is different from the traditionally defined bursting. Interspike intervals (ISIs) had been thought to be bimodally distributed in bursting DA neurons. This study found that some nonbursting DA cells also had a bimodal ISI distribution and a significant number of bursting cells did not. In the majority of cells where less than half the spikes occurred in bursts, a bimodal ISI distribution was highly predictive of the presence of the SO. Results further showed that the generation of the SO required forebrain inputs to DA neurons but not the adrenergic α1 receptor activation responsible for psychostimulant-induced increases in the SO. Taken together, these results suggest that the SO is distinct from the traditionally defined bursting and represents a major firing pattern of DA neurons in the ventral tegmental area.


2017 ◽  
Vol 118 (1) ◽  
pp. 161-175 ◽  
Author(s):  
Amr A. Mahrous ◽  
Sherif M. Elbasiouny

Burst firing in motoneurons represents the basis for generating meaningful movements. Neuromodulators and inhibitory receptor blocker cocktails have been used for years to induce burst firing in vitro; however, the ionic mechanisms in the motoneuron membrane that contribute to burst initiation and amplitude modulation are not fully understood. Small conductance Ca2+-activated potassium (SK) channels regulate excitatory inputs and firing output of motoneurons and interneurons and therefore, are a candidate for mediating bursting behavior. The present study examines the role of SK channels in the generation of synchronized bursting using an in vitro spinal cord preparation from adult mice. Our results show that SK channel inhibition is required for both initiation and amplitude modulation of burst firing. Specifically, administration of the synaptic inhibition blockers strychnine and picrotoxin amplified the spinal circuit excitatory drive but not enough to evoke bursting. However, when SK channels were inhibited using various approaches, the excitatory drive was further amplified, and synchronized bursting was always evoked. Furthermore, graded SK channel inhibition modulated the amplitude of the burst in a dose-dependent manner, which was reversed using SK channel activators. Importantly, modulation of neuronal excitability using multiple approaches failed to mimic the effects of SK modulators, suggesting a specific role for SK channel inhibition in generating bursting. Both NMDA ( N-methyl-d-aspartate) and AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionate) receptors were found to drive the synchronized bursts. The blocking of gap junctions did not disturb the burst synchrony. These results demonstrate a novel mechanistic role for SK channels in initiating and modulating burst firing of spinal motoneurons. NEW & NOTEWORTHY This study demonstrates that cholinergic inhibition or direct blockade of small conductance Ca2+-activated potassium (SK) channels facilitates burst firing in spinal motoneurons. The data provide a novel mechanistic explanation for synchronized bursting initiation and amplitude modulation through SK channel inhibition. Evidence also shows that synchronized bursting is driven by NMDA ( N-methyl-d-aspartate) and AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionate) receptors and that gap junctions do not mediate motoneuron synchronization in this behavior.


1973 ◽  
Vol 29 (02) ◽  
pp. 490-498 ◽  
Author(s):  
Hiroh Yamazaki ◽  
Itsuro Kobayashi ◽  
Tadahiro Sano ◽  
Takio Shimamoto

SummaryThe authors previously reported a transient decrease in adhesive platelet count and an enhancement of blood coagulability after administration of a small amount of adrenaline (0.1-1 µg per Kg, i. v.) in man and rabbit. In such circumstances, the sensitivity of platelets to aggregation induced by ADP was studied by an optical density method. Five minutes after i. v. injection of 1 µg per Kg of adrenaline in 10 rabbits, intensity of platelet aggregation increased to 115.1 ± 4.9% (mean ± S. E.) by 10∼5 molar, 121.8 ± 7.8% by 3 × 10-6 molar and 129.4 ± 12.8% of the value before the injection by 10”6 molar ADP. The difference was statistically significant (P<0.01-0.05). The above change was not observed in each group of rabbits injected with saline, 1 µg per Kg of 1-noradrenaline or 0.1 and 10 µg per Kg of adrenaline. Also, it was prevented by oral administration of 10 mg per Kg of phenoxybenzamine or propranolol or aspirin or pyridinolcarbamate 3 hours before the challenge. On the other hand, the enhancement of ADP-induced platelet aggregation was not observed in vitro, when 10-5 or 3 × 10-6 molar and 129.4 ± 12.8% of the value before 10∼6 molar ADP was added to citrated platelet rich plasma (CPRP) of rabbit after incubation at 37°C for 30 second with 0.01, 0.1, 1, 10 or 100 µg per ml of adrenaline or noradrenaline. These results suggest an important interaction between endothelial surface and platelets in connection with the enhancement of ADP-induced platelet aggregation by adrenaline in vivo.


1987 ◽  
Vol 57 (02) ◽  
pp. 201-204 ◽  
Author(s):  
P Y Scarabin ◽  
L Strain ◽  
C A Ludlam ◽  
J Jones ◽  
E M Kohner

SummaryDuring the collection of samples for plasma β-thromboglobulin (β-TG) determination, it is well established that artificially high values can be observed due to in-vitro release. To estimate the reliability of a single β-TG measurement, blood samples were collected simultaneously from both arms on two separate occasions in 56 diabetic patients selected for a clinical trial. From each arm, blood was taken into two tubes containing an anticoagulant mixture with (tube A) and without (tube B) PGE!. The overall mean value of B-TG in tube B was 1.14 times higher than in tube A (p <0.01). The markedly large between-arms variation accounted for the most part of within-subject variation in both tubes and was significantly greater in tube B than in tube A. Based on the difference between B-TG values from both arms, the number of subjects with artifically high B-TG values was significantly higher in tube B than in tube A on each occasion (overall rate: 28% and 14% respectively). Estimate of between-occasions variation showed that B-TG levels were relatively stable for each subject between two occasions in each tube. It is concluded that the use of PGEi decreases falsely high B-TG levels, but a single measurement of B-TG does not provide a reliable estimate of the true B-TG value in vivo.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3005
Author(s):  
Kanchan Bhardwaj ◽  
Ana Sanches Silva ◽  
Maria Atanassova ◽  
Rohit Sharma ◽  
Eugenie Nepovimova ◽  
...  

Conifers have long been recognized for their therapeutic potential in different disorders. Alkaloids, terpenes and polyphenols are the most abundant naturally occurring phytochemicals in these plants. Here, we provide an overview of the phytochemistry and related commercial products obtained from conifers. The pharmacological actions of different phytochemicals present in conifers against bacterial and fungal infections, cancer, diabetes and cardiovascular diseases are also reviewed. Data obtained from experimental and clinical studies performed to date clearly underline that such compounds exert promising antioxidant effects, being able to inhibit cell damage, cancer growth, inflammation and the onset of neurodegenerative diseases. Therefore, an attempt has been made with the intent to highlight the importance of conifer-derived extracts for pharmacological purposes, with the support of relevant in vitro and in vivo experimental data. In short, this review comprehends the information published to date related to conifers’ phytochemicals and illustrates their potential role as drugs.


2021 ◽  
pp. 1-24
Author(s):  
Juho-Matti Renko ◽  
Arun Kumar Mahato ◽  
Tanel Visnapuu ◽  
Konsta Valkonen ◽  
Mati Karelson ◽  
...  

Background: Parkinson’s disease (PD) is a progressive neurological disorder where loss of dopamine neurons in the substantia nigra and dopamine depletion in the striatum cause characteristic motor symptoms. Currently, no treatment is able to halt the progression of PD. Glial cell line-derived neurotrophic factor (GDNF) rescues degenerating dopamine neurons both in vitro and in animal models of PD. When tested in PD patients, however, the outcomes from intracranial GDNF infusion paradigms have been inconclusive, mainly due to poor pharmacokinetic properties. Objective: We have developed drug-like small molecules, named BT compounds that activate signaling through GDNF’s receptor, the transmembrane receptor tyrosine kinase RET, both in vitro and in vivo and are able to penetrate through the blood-brain barrier. Here we evaluated the properties of BT44, a second generation RET agonist, in immortalized cells, dopamine neurons and rat 6-hydroxydopamine model of PD. Methods: We used biochemical, immunohistochemical and behavioral methods to evaluate the effects of BT44 on dopamine system in vitro and in vivo. Results: BT44 selectively activated RET and intracellular pro-survival AKT and MAPK signaling pathways in immortalized cells. In primary midbrain dopamine neurons cultured in serum-deprived conditions, BT44 promoted the survival of the neurons derived from wild-type, but not from RET knockout mice. BT44 also protected cultured wild-type dopamine neurons from MPP +-induced toxicity. In a rat 6-hydroxydopamine model of PD, BT44 reduced motor imbalance and could have protected dopaminergic fibers in the striatum. Conclusion: BT44 holds potential for further development into a novel, possibly disease-modifying therapy for PD.


Life Sciences ◽  
2021 ◽  
Vol 278 ◽  
pp. 119541
Author(s):  
Aysegul Gorur ◽  
Miguel Patiño ◽  
Hideaki Takahashi ◽  
German Corrales ◽  
Curtis R. Pickering ◽  
...  

1997 ◽  
Vol 77 (5) ◽  
pp. 2427-2445 ◽  
Author(s):  
Heath S. Lukatch ◽  
M. Bruce Maciver

Lukatch, Heath S. and M. Bruce MacIver. Physiology, pharmacology, and topography of cholinergic neocortical oscillations in vitro. J. Neurophysiol. 77: 2427–2445, 1997. Rat neocortical brain slices generated rhythmic extracellular field [microelectroencephalogram (micro-EEG)] oscillations at theta frequencies (3–12 Hz) when exposed to pharmacological conditions that mimicked endogenous ascending cholinergic and GABAergic inputs. Use of the specific receptor agonist and antagonist carbachol and bicuculline revealed that simultaneous muscarinic receptor activation and γ-aminobutyric acid-A (GABAA)-mediated disinhibition werenecessary to elicit neocortical oscillations. Rhythmic activity was independent of GABAB receptor activation, but required intact glutamatergic transmission, evidenced by blockade or disruption of oscillations by 6-cyano-7-nitroquinoxaline-2,3-dione and (±)-2-amino-5-phosphonovaleric acid, respectively. Multisite mapping studies showed that oscillations were localized to areas 29d and 18b (Oc2MM) and parts of areas 18a and 17. Peak oscillation amplitudes occurred in layer 2/3, and phase reversals were observed in layers 1 and 5. Current source density analysis revealed large-amplitude current sinks and sources in layers 2/3 and 5, respectively. An initial shift in peak inward current density from layer 1 to layer 2/3 indicated that two processes underlie an initial depolarization followed by oscillatory activity. Laminar transections localized oscillation-generating circuitry to superficial cortical layers and sharp-spike-generating circuitry to deep cortical layers. Whole cell recordings identified three distinct cell types based on response properties during rhythmic micro-EEG activity: oscillation-on (theta-on) and -off (theta-off) neurons, and transiently depolarizing glial cells. Theta-on neurons displayed membrane potential oscillations that increased in amplitude with hyperpolarization (from −30 to −90 mV). This, taken together with a glutamate antagonist-induced depression of rhythmic micro-EEG activity, indicated that cholinergically driven neocortical oscillations require excitatory synaptic transmission. We conclude that under the appropriate pharmacological conditions, neocortical brain slices were capable of producing localized theta frequency oscillations. Experiments examining oscillation physiology, pharmacology, and topography demonstrated that neocortical brain slice oscillations share many similarities with the in vivo and in vitro theta EEG activity recorded in other brain regions.


Sign in / Sign up

Export Citation Format

Share Document