scholarly journals Inexpensive, scalable camera system for tracking rats in large spaces

2018 ◽  
Vol 120 (5) ◽  
pp. 2383-2395 ◽  
Author(s):  
Rajat Saxena ◽  
Warsha Barde ◽  
Sachin S. Deshmukh

Most studies of neural correlates of spatial navigation are restricted to small arenas (≤1 m2) because of the limits imposed by the recording cables. New wireless recording systems have a larger recording range. However, these neuronal recording systems lack the ability to track animals in large area, constraining the size of the arena. We developed and benchmarked an open-source, scalable multicamera tracking system based on low-cost hardware. This “Picamera system” was used in combination with a wireless recording system for characterizing neural correlates of space in environments of sizes up to 16.5 m2. The Picamera system showed substantially better temporal accuracy than a popular commercial system. An explicit comparison of one camera from the Picamera system with a camera from the commercial system showed improved accuracy in estimating spatial firing characteristics and head direction tuning of neurons. This improved temporal accuracy is crucial for accurately aligning videos from multiple cameras in large spaces and characterizing spatially modulated cells in a large environment. NEW & NOTEWORTHY Studies of neural correlates of space are limited to biologically unrealistically small spaces by neural recording and position tracking hardware. We developed a camera system capable of tracking animals in large spaces at a high temporal accuracy. Together with the new wireless recording systems, this system facilitates the study of neural correlates of space at biologically relevant scale. This increased temporal accuracy of tracking also improves the estimates of spatiotemporal correlates of neural activity.

2018 ◽  
Author(s):  
Rajat Saxena ◽  
Warsha Barde ◽  
Sachin S. Deshmukh

AbstractMost studies focused on understanding the neural circuits underlying spatial navigation are restricted to small behavioral arenas (≤ 1 m2) because of the limits imposed by the cables extending from the animal to the recording system. New wireless recording systems have significantly increased the recording range. However, the size of arena is still constrained by the lack of a video tracking system capable of monitoring the animal’s movements over large areas integrated with these recording systems. We developed and benchmarked a novel, open-source, scalable multi-camera tracking system based on commercially available and low-cost hardware (Raspberry Pi computers and Raspberry Pi cameras). This Picamera system was used in combination with a wireless recording system for characterizing neural correlates of space in environments of various sizes up to 16.5 m2. Spatial rate maps generated using the Picamera system showed improved accuracy in estimating spatial firing characteristics of neurons compared to a popular commercial system, due to its better temporal accuracy. The system also showed improved accuracy in estimating head direction cell tuning as well as theta phase precession in place cells. This improved temporal accuracy is crucial for accurately aligning videos from multiple cameras in large spaces and characterizing spatially modulated cells in a large environment.


2015 ◽  
Vol 61 (2) ◽  
pp. 165-170 ◽  
Author(s):  
Gernot Korak ◽  
Gernot Kucera

Abstract The presented optical tracking system allows intuitive controlling and programming of industrial robots by demonstration. The system is engineered with low cost components. Using an active marker (IR-LEDs) in combination with a stereo vision configuration of the camera system and the selection of suitable algorithms for the process chain of the image processing a positioning accuracy in the range of millimeters has been achieved. The communication between the tracking system and the robot is realized by using the TCP/IP protocol via an Ethernet connection.


2020 ◽  
Vol 90 (3) ◽  
pp. 30502
Author(s):  
Alessandro Fantoni ◽  
João Costa ◽  
Paulo Lourenço ◽  
Manuela Vieira

Amorphous silicon PECVD photonic integrated devices are promising candidates for low cost sensing applications. This manuscript reports a simulation analysis about the impact on the overall efficiency caused by the lithography imperfections in the deposition process. The tolerance to the fabrication defects of a photonic sensor based on surface plasmonic resonance is analysed. The simulations are performed with FDTD and BPM algorithms. The device is a plasmonic interferometer composed by an a-Si:H waveguide covered by a thin gold layer. The sensing analysis is performed by equally splitting the input light into two arms, allowing the sensor to be calibrated by its reference arm. Two different 1 × 2 power splitter configurations are presented: a directional coupler and a multimode interference splitter. The waveguide sidewall roughness is considered as the major negative effect caused by deposition imperfections. The simulation results show that plasmonic effects can be excited in the interferometric waveguide structure, allowing a sensing device with enough sensitivity to support the functioning of a bio sensor for high throughput screening. In addition, the good tolerance to the waveguide wall roughness, points out the PECVD deposition technique as reliable method for the overall sensor system to be produced in a low-cost system. The large area deposition of photonics structures, allowed by the PECVD method, can be explored to design a multiplexed system for analysis of multiple biomarkers to further increase the tolerance to fabrication defects.


2006 ◽  
Vol 90 (20) ◽  
pp. 3557-3567 ◽  
Author(s):  
U. Gangopadhyay ◽  
K.H. Kim ◽  
S.K. Dhungel ◽  
U. Manna ◽  
P.K. Basu ◽  
...  

2021 ◽  
Vol 13 (15) ◽  
pp. 8244
Author(s):  
Francesca Cirisano ◽  
Michele Ferrari

Highly hydrophobic and superhydrophobic materials obtained from recycled polymers represent an interesting challenge to recycle and reuse advanced performance materials after their first life. In this article, we present a simple and low-cost method to fabricate a superhydrophobic surface by employing polytetrafluoroethylene (PTFE) powder in polystyrene (PS) dispersion. With respect to the literature, the superhydrophobic surface (SHS) was prepared by utilizing a spray- coating technique at room temperature, a glass substrate without any further modification or thermal treatment, and which can be applied onto a large area and on to any type of material with some degree of fine control over the wettability properties. The prepared surface showed superhydrophobic behavior with a water contact angle (CA) of 170°; furthermore, the coating was characterized with different techniques, such as a 3D confocal profilometer, to measure the average roughness of the coating, and scanning electron microscopy (SEM) to characterize the surface morphology. In addition, the durability of SH coating was investigated by a long-water impact test (raining test), thermal treatment at high temperature, an abrasion test, and in acidic and alkaline environments. The present study may suggest an easy and scalable method to produce SHS PS/PTFE films that may find implementation in various fields.


Author(s):  
Paula Ramos-Giraldo ◽  
S. Chris Reberg-Horton ◽  
Steven Mirsky ◽  
Edgar Lobaton ◽  
Anna M. Locke ◽  
...  

2018 ◽  
Vol 9 ◽  
pp. 1582-1593 ◽  
Author(s):  
Silvia Rizzato ◽  
Elisabetta Primiceri ◽  
Anna Grazia Monteduro ◽  
Adriano Colombelli ◽  
Angelo Leo ◽  
...  

Colloidal lithography is an innovative fabrication technique employing spherical, nanoscale crystals as a lithographic mask for the low cost realization of nanoscale patterning. The features of the resulting nanostructures are related to the particle size, deposition conditions and interactions involved. In this work, we studied the absorption of polystyrene spheres onto a substrate and discuss the effect of particle–substrate and particle–particle interactions on their organization. Depending on the nature and the strength of the interactions acting in the colloidal film formation, two different strategies were developed in order to control the number of particles on the surface and the interparticle distance, namely changing the salt concentration and absorption time in the particle solution. These approaches enabled the realization of large area (≈cm2) patterning of nanoscale holes (nanoholes) and nanoscale disks (nanodisks) of different sizes and materials.


Sign in / Sign up

Export Citation Format

Share Document