scholarly journals Interlimb neural interactions in corticospinal and spinal reflex circuits during preparation and execution of isometric elbow flexion

2020 ◽  
Vol 124 (3) ◽  
pp. 652-667
Author(s):  
Atsushi Sasaki ◽  
Naotsugu Kaneko ◽  
Yohei Masugi ◽  
Matija Milosevic ◽  
Kimitaka Nakazawa

We found that upper limb muscle contractions facilitated corticospinal circuits controlling lower limb muscles even during motor preparation, whereas motor execution of the task was required to facilitate spinal circuits. We also found that facilitation did not depend on whether contralateral or ipsilateral hands were contracted or if they were contracted bilaterally. Overall, these findings suggest that training of unaffected upper limbs may be useful to enhance facilitation of affected lower limbs in paraplegic individuals.

2004 ◽  
Vol 97 (4) ◽  
pp. 1299-1308 ◽  
Author(s):  
Helen J. Huang ◽  
Daniel P. Ferris

During gait rehabilitation, therapists or robotic devices often supply physical assistance to a patient's lower limbs to aid stepping. The expensive equipment and intensive manual labor required for these therapies limit their availability to patients. One alternative solution is to design devices where patients could use their upper limbs to provide physical assistance to their lower limbs (i.e., self-assistance). To explore potential neural effects of coupling upper and lower limbs, we investigated neuromuscular recruitment during self-driven and externally driven lower limb motion. Healthy subjects exercised on a recumbent stepper using different combinations of upper and lower limb exertions. The recumbent stepper mechanically coupled the upper and lower limbs, allowing users to drive the stepping motion with upper and/or lower limbs. We instructed subjects to step with 1) active upper and lower limbs at an easy resistance level (active arms and legs); 2) active upper limbs and relaxed lower limbs at easy, medium, and hard resistance levels (self-driven); and 3) relaxed upper and lower limbs while another person drove the stepping motion (externally driven). We recorded surface electromyography (EMG) from six lower limb muscles. Self-driven EMG amplitudes were always higher than externally driven EMG amplitudes ( P < 0.05). As resistance and upper limb exertion increased, self-driven EMG amplitudes also increased. EMG bursts during self-driven and active arms and legs stepping occurred at similar times. These results indicate that active upper limb movement increases neuromuscular activation of the lower limbs during cyclic stepping motions. Neurologically impaired humans that actively engage their upper limbs during gait rehabilitation may increase neuromuscular activation and enhance activity-dependent plasticity.


2021 ◽  
Vol 6 (1) ◽  
pp. 16
Author(s):  
Kara B. Bellenfant ◽  
Gracie L. Robbins ◽  
Rebecca R. Rogers ◽  
Thomas J. Kopec ◽  
Christopher G. Ballmann

The purpose of this study was to investigate the effects of how limb dominance and joint immobilization alter markers of physical demand and muscle activation during ambulation with axillary crutches. In a crossover, counterbalanced study design, physically active females completed ambulation trials with three conditions: (1) bipedal walking (BW), (2) axillary crutch ambulation with their dominant limb (DOM), and (3) axillary crutch ambulation with their nondominant limb (NDOM). During the axillary crutch ambulation conditions, the non-weight-bearing knee joint was immobilized at a 30-degree flexion angle with a postoperative knee stabilizer. For each trial/condition, participants ambulated at 0.6, 0.8, and 1.0 mph for five minutes at each speed. Heart rate (HR) and rate of perceived exertion (RPE) were monitored throughout. Surface electromyography (sEMG) was used to record muscle activation of the medial gastrocnemius (MG), soleus (SOL), and tibialis anterior (TA) unilaterally on the weight-bearing limb. Biceps brachii (BB) and triceps brachii (TB) sEMG were measured bilaterally. sEMG signals for each immobilization condition were normalized to corresponding values for BW.HR (p < 0.001) and RPE (p < 0.001) were significantly higher for both the DOM and NDOM conditions compared to BW but no differences existed between the DOM and NDOM conditions (p > 0.05). No differences in lower limb muscle activation were noted for any muscles between the DOM and NDOM conditions (p > 0.05). Regardless of condition, BB activation ipsilateral to the ambulating limb was significantly lower during 0.6 mph (p = 0.005) and 0.8 mph (p = 0.016) compared to the same speeds for BB on the contralateral side. Contralateral TB activation was significantly higher during 0.6 mph compared to 0.8 mph (p = 0.009) and 1.0 mph (p = 0.029) irrespective of condition. In conclusion, limb dominance appears to not alter lower limb muscle activation and walking intensity while using axillary crutches. However, upper limb muscle activation was asymmetrical during axillary crutch use and largely dependent on speed. These results suggest that functional asymmetry may exist in upper limbs but not lower limbs during assistive device supported ambulation.


Medicina ◽  
2020 ◽  
Vol 56 (12) ◽  
pp. 683
Author(s):  
Maros Kalata ◽  
Tomas Maly ◽  
Mikulas Hank ◽  
Jakub Michalek ◽  
David Bujnovsky ◽  
...  

Background and objective: Type of physical activity may influence morphological and muscular asymmetries in the young population. However, less is known about the size of this effect when comparing various sports. The aim of this study was to identify the degree of bilateral asymmetry (BA) and the level of unilateral ratio (UR) between isokinetic strength of knee extensors (KE) and flexors (KF) among athletes of three different types of predominant locomotion in various sports (symmetric, asymmetric and hybrid). Material and methods: The analyzed group consisted of young elite athletes (n = 50). The maximum peak muscle torque of the KE and KF in both the dominant (DL) and non-dominant (NL) lower limb during concentric muscle contraction at an angular velocity of 60°·s−1 was measured with an isokinetic dynamometer. Results: Data analysis showed a significant effect of the main factor (the type of sport) on the level of monitored variables (p = 0.004). The type of sport revealed a significant difference in the bilateral ratio (p = 0.01). The group of symmetric and hybrid sports achieved lower values (p = 0.01) of BA in their lower limb muscles than those who played asymmetric sports. The hybrid sports group achieved higher UR values (p = 0.01) in both lower limbs. Conclusions: The results indicate that sports with predominantly symmetrical, asymmetrical, and hybrid types of locomotion affected the size of the BA, as well as the UR between KE and KF in both legs in young athletes. We recommend paying attention to regular KE and KF strength diagnostics in young athletes and optimizing individual compensatory exercises if a higher ratio of strength asymmetry is discovered.


2013 ◽  
Vol 109 (8) ◽  
pp. 1996-2006 ◽  
Author(s):  
Hidehito Tomita ◽  
Yoshiki Fukaya ◽  
Kenji Totsuka ◽  
Yuri Tsukahara

This study aimed to determine whether individuals with spastic diplegic cerebral palsy (SDCP) have deficits in anticipatory inhibition of postural muscle activity. Nine individuals with SDCP (SDCP group, 3 female and 6 male, 13–24 yr of age) and nine age- and sex-matched individuals without disability (control group) participated in this study. Participants stood on a force platform, which was used to measure the position of the center of pressure (CoP), while holding a light or heavy load in front of their bodies. They then released the load by abducting both shoulders. Surface electromyograms were recorded from the rectus abdominis, erector spinae (ES), rectus femoris (RF), medial hamstring (MH), tibialis anterior (TA), and gastrocnemius (GcM) muscles. In the control group, anticipatory inhibition before load release and load-related modulation of the inhibition were observed in all the dorsal muscles recorded (ES, MH, and GcM). In the SDCP group, similar results were obtained in the trunk muscle (ES) but not in the lower limb muscles (MH and GcM), although individual differences were seen, especially in MH. Anticipatory activation of the ventral lower limb muscles (RF and TA) and load-related modulation of the activation were observed in both participant groups. CoP path length during load release was longer in the SDCP group than in the control group. The present findings suggest that individuals with SDCP exhibit deficits in anticipatory inhibition of postural muscles at the dorsal part of the lower limbs, which is likely to result in a larger disturbance of postural equilibrium.


Phlebologie ◽  
2020 ◽  
Vol 49 (04) ◽  
pp. 242-248
Author(s):  
René Hägerling

Abstract Introduction Lymphovascular diseases represent a heterogenous group of inherited and sporadic disorders and refer to a range of possible underlying pathologies and pathogenesis.Emberger Syndrome, an inherited form of lymphedema, is characterized by bilateral lower limb lymphedema, however, upper limbs do not show any signs of swelling.To identify disease-associated histopathological alterations in patients with Emberger Syndrome and to elucidate potential histological differences between the lymphatic vasculature of upper and lower limbs, a detailed knowledge on the 3-dimensional tissue and vessel architecture is essential. However, the current gold standard in 2-dimensional histology provides only very limited spatial information. Material and methods To elucidate the underlying vascular pathology in Emberger Syndrome on the cellular level, we applied the 3-dimensional visualization and analysis approach VIPAR (volume information-based histopathological analysis by 3D reconstruction and data extraction) to entire wholemount immunofluorescence-stained human tissue samples. VIPAR is a light sheet microscopy-based imaging technique, which allows 3-dimensional reconstruction of entire tissue biopsies followed by automated and semi-automated analysis of vascular parameters in 3-dimensional space. Results Using VIPAR we could show that in Emberger Syndrome the dermal lymphatic vasculature is intact and non-disrupted.However, lower limbs showed an hypoplastic lymphatic vasculature with absence of lymphatic valves in pre-collecting and collecting vessels. In contrast to the lower limbs, the lymphatic vasculature of the upper limbs showed no morphological alterations of lymphatic vessels and lymphatic valves compared to healthy controls. Discussion Based on the 3-dimensional histopathological analysis we were able to perform a detailed phenotyping of lymphatic vessels in the upper and lower limb in Emberger Syndrome and to identify the underlying vascular pathology. In addition, we could show vascular alteration between the upper and lower limbs indicating a vascular heterogeneity of dermal lymph vessels causing the lower limb lymphedema.


Author(s):  
Madiha Ijaz ◽  
Sajid Rashid Ahmad ◽  
Muhammad M. Akram ◽  
Steven M. Thygerson ◽  
Falaq Ali Nadeem ◽  
...  

Background: In subcontinental underground mines, coal mining is carried out manually and requires many laborers to practice traditional means of coal excavation. Each task of this occupation disturbs workers’ musculoskeletal order. In order to propose and practice possible ergonomic interventions, it is necessary to know what tasks (drilling and blasting, coal cutting, dumping, transporting, timbering and supporting, loading and unloading) cause disorder in either upper limbs, lower limbs, or both. Methods: To this end, R-programming, version R 3.1.2 and SPSS, software 20, were used to calculate data obtained by studying 260 workers (working at different tasks of coal mining) from 20 mines of four districts of Punjab, Pakistan. In addition, a Standard Nordic Musculoskeletal Questionnaire (SNMQ) and Rapid Upper Limb Assessment (RULA) sheet were used to collect data and to analyze postures respectively. Results: In multi regression models, significance of the five tasks for upper and lower limb disorder is 0.00, which means that task based prevalence of upper and lower limb disorders are common in underground coal mines. The results of the multiple bar chart showed that 96 coal cutters got upper limb disorders and 82 got lower limb disorders. The task of timbering and supporting was shown to be dangerous for the lower limbs and relatively less dangerous for the upper limbs, with 25 workers reporting pain in their lower limbs, and 19 workers reporting pain in their upper limbs. Documented on the RULA sheet, all tasks got the maximum possible score (7), meaning that each of these tasks pose a threat to the posture of 100% of workers. The majority of participants (182) fell in the age group of 26 to 35 years. Of those workers, 131 reported pain in the lower limbs and slight discomfort (128) in the upper limbs. The significance value of age was 0.00 for upper limb disorder and was 0.012 for lower limb disorder. Frequency graphs show age in direct proportion to severity of pain while in inverse proportion with number of repetitions performed per min. Conclusions: All findings infer that each task of underground coal mining inflicts different levels of disorder in a workers’ musculoskeletal structure of the upper and lower limbs. It highlighted the need for urgent intervention in postural aspects of each task.


2020 ◽  
Vol 6 ◽  
pp. 233372142097980
Author(s):  
Kenichi Kaneko ◽  
Hitoshi Makabe ◽  
Kazuyuki Mito ◽  
Kazuyoshi Sakamoto ◽  
Yoshiya Kawanori ◽  
...  

This study examined the characteristics of lower limb muscle activity in elderly persons after ergometric pedaling exercise for 1 month. To determine the effect of the exercise, surface electromyography (SEMG) of lower limb muscles was subjected to Daubechies-4 wavelet transformation, and mean wavelet coefficients were compared with the pre-exercise coefficients and the post-exercise coefficients in each wavelet level. The characteristics of muscle activity after pedaling exercise were also compared between the elderly subjects and young subjects. For the elderly subjects, the mean wavelet coefficients were significantly decreased in the tibialis anterior and the gastrocnemius medialis at wavelet levels of 3, 4, and 5 (125–62.5, 62.5–31.25, and 31.25–15.625 Hz, respectively), by pedaling exercise. However, the mean power of wavelet levels of 2 and 3 (250–125 and 125–62.5 Hz) within the rectus femoris and the biceps femoris were significantly increased in the young subjects. The effect of pedaling exercise is different from the effects of heavy-resistance training. It was suggested that the muscle coordination, motor unit (MU) firing frequency, and firing fiber type of lower limb muscles are changed with the different characteristics between elderly and young persons by pedaling exercise for 1 month.


Author(s):  
Longhan Xie ◽  
Xiaodong Li

During walking, human lower limbs accelerate and decelerate alternately, during which period the human body does positive and negative work, respectively. Muscles provide power to all motions and cost metabolic energy both in accelerating and decelerating the lower limbs. In this work, the lower-limb biomechanics of walking was analyzed and it revealed that if the negative work performed during deceleration can be harnessed using some assisting device to then assist the acceleration movement of the lower limb, the total metabolic cost of the human body during walking can be reduced. A flexible lower-limb exoskeleton was then proposed; it is worn in parallel to the lower limbs to assist human walking without consuming external power. The flexible exoskeleton consists of elastic and damping components that are similar to physiological structure of a human lower limb. When worn on the lower limb, the exoskeleton can partly replace the function of the lower limb muscles and scavenge kinetic energy during lower limb deceleration to assist the acceleration movement. Besides, the generator in the exoskeleton, serving as a damping component, can harvest kinetic energy to produce electricity. A prototype of the flexible exoskeleton was developed, and experiments were carried out to validate the analysis. The experiments showed that the exoskeleton could reduce the metabolic cost by 3.12% at the walking speed of 4.5 km/h.


Author(s):  
Akira Saito ◽  
Kento Nakagawa ◽  
Yohei Masugi ◽  
Kimitaka Nakazawa

AbstractVoluntary contraction facilitates corticospinal and spinal reflex circuit excitabilities of the contracted muscle and inhibits spinal reflex circuit excitability of the antagonist. It has been suggested that modulation of spinal reflex circuit excitability in agonist and antagonist muscles during voluntary contraction differs among lower-limb muscles. However, whether the effects of voluntary contraction on the excitabilities of corticospinal and spinal reflex circuits depend on the tested muscles remains unknown. The purpose of this study was to examine inter-muscle differences in modulation of the corticospinal and spinal reflex circuit excitabilities of multiple lower-limb muscles during voluntary contraction. Eleven young males performed isometric plantar-flexion, dorsi-flexion, knee extension, and flexion at low torque levels. Motor evoked potentials (MEPs) and posterior root-muscle reflexes from seven lower-leg and thigh muscles were evoked by transcranial magnetic stimulation and transcutaneous spinal cord stimulation, respectively, at rest and during weak voluntary contractions. MEP and posterior root-muscle reflex amplitudes of agonists were significantly increased as agonist torque level increased, except for the reflex of the tibialis anterior. MEP amplitudes of antagonists were significantly increased in relation to the agonist torque level, but those of the rectus femoris were slightly depressed during knee flexion. Regarding the posterior root-muscle reflex of the antagonists, the amplitudes of triceps surae and the hamstrings were significantly decreased, but those of the quadriceps femoris were significantly increased as the agonist torque level increased. These results demonstrate that modulation of corticospinal and spinal reflex circuit excitabilities during agonist and antagonist muscle contractions differed among lower-limb muscles.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261265
Author(s):  
Paweł Pakosz ◽  
Anna Lukanova-Jakubowska ◽  
Edyta Łuszczki ◽  
Mariusz Gnoiński ◽  
Oscar García-García

Background The purpose of this study was to identify the biomedical signals of short-track athletes by evaluating the effects of monthly strength training on changes in their neuromuscular profile, strength, and power parameters of the lower limb muscles. Muscle asymmetry, which can cause a risk of injury, was also evaluated. Methods and results This study involved female athletes, age 18.8 ± 2.7 years, with a height of 162 ± 2.4 cm, and weight of 55.9 ± 3.9 kg. Before and after the monthly preparatory period prior to the season, strength measurements were assessed through the Swift SpeedMat platform, and reactivity of the lower limb muscles was assessed with tensiomyography (TMG). The athletes were also tested before and after the recovery training period. In the test after strength training, all average countermovement jump (CMJ) results improved. Flight time showed an increase with a moderate to large effect, using both legs (5.21%). Among the TMG parameters, time contraction (Tc) changed globally with a decrease (-5.20%). Changes in the results of the test after recovery training were most often not significant. Conclusion A monthly period of strength training changes the neuromuscular profile of short-track female athletes, with no significant differences between the right and left lower limbs.


Sign in / Sign up

Export Citation Format

Share Document