Rostral Ganglia Are Required for Induction But Not Expression of Crayfish Escape Reflex Habituation: Role of Higher Centers in Reprogramming Low-Level Circuits

2006 ◽  
Vol 95 (4) ◽  
pp. 2721-2724 ◽  
Author(s):  
David Shirinyan ◽  
Terri Teshiba ◽  
Karen Taylor ◽  
Pia O'Neill ◽  
Sunhee Cho Lee ◽  
...  

It is widely assumed that learning results from alterations in the strength of synapses within the neural pathways that mediate a learned behavioral response and that these alterations are directly caused by training-induced activity of neurons connected by the changing synapses. Initial evidence for this view came from studies of habituation of defensive reflexes in several invertebrate species. However, more recent studies of habituation of the escape reflex in one of these species, the crayfish, have shown that habituation is substantially caused by tonic inhibitory input from cephalic ganglia; this descending inhibition suppresses the activity of neurons within the escape circuit, which reside in caudal ganglia. Such control by descending inhibition indicates that animals with encephalized nervous systems do not entirely abdicate to low-level circuitry the important decision of whether to habituate to stimuli that might warn of danger. Higher centers in fact play a major role in controlling the habituation of this potentially life-saving protective response. Another way for higher centers to control lower ones would be to induce alteration of the lower center's intrinsic properties. Here, we show that, whereas descending input from higher ganglia is needed to induce habituation, once established, habituation persists even after rostral ganglia are disconnected. This provides evidence that lower-level neural circuits can be reprogrammed through transient interaction with higher ganglia to decrease their intrinsic tendency to produce escape.

2006 ◽  
Vol 76 (1) ◽  
pp. 28-33 ◽  
Author(s):  
Yukari Egashira ◽  
Shin Nagaki ◽  
Hiroo Sanada

We investigated the change of tryptophan-niacin metabolism in rats with puromycin aminonucleoside PAN-induced nephrosis, the mechanisms responsible for their change of urinary excretion of nicotinamide and its metabolites, and the role of the kidney in tryptophan-niacin conversion. PAN-treated rats were intraperitoneally injected once with a 1.0% (w/v) solution of PAN at a dose of 100 mg/kg body weight. The collection of 24-hour urine was conducted 8 days after PAN injection. Daily urinary excretion of nicotinamide and its metabolites, liver and blood NAD, and key enzyme activities of tryptophan-niacin metabolism were determined. In PAN-treated rats, the sum of urinary excretion of nicotinamide and its metabolites was significantly lower compared with controls. The kidneyα-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) activity in the PAN-treated group was significantly decreased by 50%, compared with the control group. Although kidney ACMSD activity was reduced, the conversion of tryptophan to niacin tended to be lower in the PAN-treated rats. A decrease in urinary excretion of niacin and the conversion of tryptophan to niacin in nephrotic rats may contribute to a low level of blood tryptophan. The role of kidney ACMSD activity may be minimal concerning tryptophan-niacin conversion under this experimental condition.


Author(s):  
Dr. Manisha ◽  
Dr. Ruchi Jindal

Background: The term "ovarian cancer" includes several different types of cancer that  arise from cells of the ovary, most commonly, tumors arise from the epithelium or lining cells of the ovary.  Ovarian cancer risk is positively associated with higher consumption of dietary cholesterol and eggs, and inversely associated with a higher intake of vegetables. High consumption of fats may increase circulating estrogen levels, thus increasing the possibility of cell damage and proliferation that is responsible for cancerous growth. Material & Methods: The present study was conducted at Geetanjali Medical College and Hospital, Udaipur (Rajasthan). Total  100 cases (females) attending the obstetrics and gynecology department for some gynecological and other problem  were selected for this study between the age of 40-60 years, who were attending cancer centre at GEETANJALI MEDICAL COLLEGE AND  HOSPITAL, Udaipur (Rajasthan).                GROUP I: - It consisted of healthy females control subjects (n=50) .By routine examination and tests, we ensured that all the subjects were healthy and there were no signs and symptoms or history of ovarian tumor and diseases GROUP II: - It consisted of ovarian cancer females subjects (n=50) with a history of ovarian tumor. Results:   Higher level of cholesterol, LDL, VLDL and low level of HDL are found in ovarian cancer patients. Conclusion: The present study we highlights the importance and role of serum lipid profile in diagnosis, prognosis and recurrence of the disease. The study shows that serum level of cholesterol, LDL, VLDL was elevated in  patients of ovarian cancer while low level of HDL are found in ovarian cancer patients. Key words: lipid profile, ovarian cancer.


2021 ◽  
pp. 088506662199232
Author(s):  
Xiaojuan Zhang ◽  
Xin Li

Septic shock with multiple organ failure is a devastating situation in clinical settings. Through the past decades, much progress has been made in the management of sepsis and its underlying pathogenesis, but a highly effective therapeutic has not been developed. Recently, macromolecules such as histones have been targeted in the treatment of sepsis. Histones primarily function as chromosomal organizers to pack DNA and regulate its transcription through epigenetic mechanisms. However, a growing body of research has shown that histone family members can also exert cellular toxicity once they relocate from the nucleus into the extracellular space. Heparin, a commonly used anti-coagulant, has been shown to possess life-saving capabilities for septic patients, but the potential interplay between heparin and extracellular histones has not been investigated. In this review, we summarize the pathogenic roles of extracellular histones and the therapeutic roles of heparin in the development and management of sepsis and septic shock.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhong Li ◽  
Jin-Xing Wei ◽  
Guang-Wei Zhang ◽  
Junxiang J. Huang ◽  
Brian Zingg ◽  
...  

AbstractAnimals exhibit innate defense behaviors in response to approaching threats cued by the dynamics of sensory inputs of various modalities. The underlying neural circuits have been mostly studied in the visual system, but remain unclear for other modalities. Here, by utilizing sounds with increasing (vs. decreasing) loudness to mimic looming (vs. receding) objects, we find that looming sounds elicit stereotypical sequential defensive reactions: freezing followed by flight. Both behaviors require the activity of auditory cortex, in particular the sustained type of responses, but are differentially mediated by corticostriatal projections primarily innervating D2 neurons in the tail of the striatum and corticocollicular projections to the superior colliculus, respectively. The behavioral transition from freezing to flight can be attributed to the differential temporal dynamics of the striatal and collicular neurons in their responses to looming sound stimuli. Our results reveal an essential role of the striatum in the innate defense control.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 90
Author(s):  
Swetha B. M. Gowda ◽  
Safa Salim ◽  
Farhan Mohammad

The control of movements is a fundamental feature shared by all animals. At the most basic level, simple movements are generated by coordinated neural activity and muscle contraction patterns that are controlled by the central nervous system. How behavioral responses to various sensory inputs are processed and integrated by the downstream neural network to produce flexible and adaptive behaviors remains an intense area of investigation in many laboratories. Due to recent advances in experimental techniques, many fundamental neural pathways underlying animal movements have now been elucidated. For example, while the role of motor neurons in locomotion has been studied in great detail, the roles of interneurons in animal movements in both basic and noxious environments have only recently been realized. However, the genetic and transmitter identities of many of these interneurons remains unclear. In this review, we provide an overview of the underlying circuitry and neural pathways required by Drosophila larvae to produce successful movements. By improving our understanding of locomotor circuitry in model systems such as Drosophila, we will have a better understanding of how neural circuits in organisms with different bodies and brains lead to distinct locomotion types at the organism level. The understanding of genetic and physiological components of these movements types also provides directions to understand movements in higher organisms.


2020 ◽  
Author(s):  
Jing Wei ◽  
Jia Cheng ◽  
Nicholas J Waddell ◽  
Zi-Jun Wang ◽  
Xiaodong Pang ◽  
...  

Abstract Emerging evidence suggests that epigenetic mechanisms regulate aberrant gene transcription in stress-associated mental disorders. However, it remains to be elucidated about the role of DNA methylation and its catalyzing enzymes, DNA methyltransferases (DNMTs), in this process. Here, we found that male rats exposed to chronic (2-week) unpredictable stress exhibited a substantial reduction of Dnmt3a after stress cessation in the prefrontal cortex (PFC), a key target region of stress. Treatment of unstressed control rats with DNMT inhibitors recapitulated the effect of chronic unpredictable stress on decreased AMPAR expression and function in PFC. In contrast, overexpression of Dnmt3a in PFC of stressed animals prevented the loss of glutamatergic responses. Moreover, the stress-induced behavioral abnormalities, including the impaired recognition memory, heightened aggression, and hyperlocomotion, were partially attenuated by Dnmt3a expression in PFC of stressed animals. Finally, we found that there were genome-wide DNA methylation changes and transcriptome alterations in PFC of stressed rats, both of which were enriched at several neural pathways, including glutamatergic synapse and microtubule-associated protein kinase signaling. These results have therefore recognized the potential role of DNA epigenetic modification in stress-induced disturbance of synaptic functions and cognitive and emotional processes.


2007 ◽  
Vol 89 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Mark D Stringer

In recent years, considerable progress has been made in the treatment of children with hepatoblastoma largely due to effective pre-operative chemotherapy. Total hepatectomy and liver transplantation has emerged as an effective treatment for the small proportion of children with unresectable hepatoblastoma limited to the liver. A 5-year survival of 70% can be achieved in such cases. In contrast, the results of liver transplantation in children with hepatocellular cancer remain poor because these tumours are usually advanced with evidence of major vascular invasion and/or extrahepatic spread at the time of presentation. An exception is those children in whom the hepatocellular carcinoma is detected during surveillance of chronic liver disease – they typically have smaller tumours and frequently have a good prognosis after liver transplantation. The role of liver transplantation in children with other primary hepatic malignancies remains uncertain because experience is very limited. Liver transplantation is rarely needed in the management of children with benign liver tumours but, if other treatments have failed, it can be a life-saving intervention.


2010 ◽  
Vol 138 (4) ◽  
pp. 1368-1382 ◽  
Author(s):  
Jeffrey S. Gall ◽  
William M. Frank ◽  
Matthew C. Wheeler

Abstract This two-part series of papers examines the role of equatorial Rossby (ER) waves in tropical cyclone (TC) genesis. To do this, a unique initialization procedure is utilized to insert n = 1 ER waves into a numerical model that is able to faithfully produce TCs. In this first paper, experiments are carried out under the idealized condition of an initially quiescent background environment. Experiments are performed with varying initial wave amplitudes and with and without diabatic effects. This is done to both investigate how the properties of the simulated ER waves compare to the properties of observed ER waves and explore the role of the initial perturbation strength of the ER wave on genesis. In the dry, frictionless ER wave simulation the phase speed is slightly slower than the phase speed predicted from linear theory. Large-scale ascent develops in the region of low-level poleward flow, which is in good agreement with the theoretical structure of an n = 1 ER wave. The structures and phase speeds of the simulated full-physics ER waves are in good agreement with recent observational studies of ER waves that utilize wavenumber–frequency filtering techniques. Convection occurs primarily in the eastern half of the cyclonic gyre, as do the most favorable conditions for TC genesis. This region features sufficient midlevel moisture, anomalously strong low-level cyclonic vorticity, enhanced convection, and minimal vertical shear. Tropical cyclogenesis occurs only in the largest initial-amplitude ER wave simulation. The formation of the initial tropical disturbance that ultimately develops into a tropical cyclone is shown to be sensitive to the nonlinear horizontal momentum advection terms. When the largest initial-amplitude simulation is rerun with the nonlinear horizontal momentum advection terms turned off, tropical cyclogenesis does not occur, but the convectively coupled ER wave retains the properties of the ER wave observed in the smaller initial-amplitude simulations. It is shown that this isolated wave-only genesis process only occurs for strong ER waves in which the nonlinear advection is large. Part II will look at the more realistic case of ER wave–related genesis in which a sufficiently intense ER wave interacts with favorable large-scale flow features.


Sign in / Sign up

Export Citation Format

Share Document