scholarly journals Neural substrates of sensorimotor processes: letter writing and letter perception

2016 ◽  
Vol 115 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Sophia A. Vinci-Booher ◽  
Karin H. James

Writing and perceiving letters are thought to share similar neural substrates; however, what constitutes a neural representation for letters is currently debated. One hypothesis is that letter representation develops from sensorimotor experience resulting in an integrated set of modality-specific regions, whereas an alternative account suggests that letter representations may be abstract, independent of modality. Studies reviewed suggest that letter representation consists of a network of modality-responsive brain regions that may include an abstract component.

2016 ◽  
Vol 16 (12) ◽  
pp. 678
Author(s):  
Sophia Vinci-Booher ◽  
Neha Sehgal ◽  
Felipe Munoz-Rubke ◽  
Karin James

2019 ◽  
Author(s):  
Tomoyasu Horikawa ◽  
Alan S. Cowen ◽  
Dacher Keltner ◽  
Yukiyasu Kamitani

SummaryCentral to our subjective lives is the experience of different emotions. Recent behavioral work mapping emotional responses to 2185 videos found that people experience upwards of 27 distinct emotions occupying a high-dimensional space, and that emotion categories, more so than affective dimensions (e.g., valence), organize self-reports of subjective experience. Here, we sought to identify the neural substrates of this high-dimensional space of emotional experience using fMRI responses to all 2185 videos. Our analyses demonstrated that (1) dozens of video-evoked emotions were accurately predicted from fMRI patterns in multiple brain regions with different regional configurations for individual emotions, (2) emotion categories better predicted cortical and subcortical responses than affective dimensions, outperforming visual and semantic covariates in transmodal regions, and (3) emotion-related fMRI responses had a cluster-like organization efficiently characterized by distinct categories. These results support an emerging theory of the high-dimensional emotion space, illuminating its neural foundations distributed across transmodal regions.


Author(s):  
Judy S. Reilly ◽  
Lara R. Polse

With respect to language, it has long been observed that children who experience early unilateral brain injury do not show the same irreparable damage as do adults with homologous late-onset strokes. Neural plasticity has been proposed as the explanation for such differential linguistic profiles; that is, the plasticity of the young, developing brain allows the possibility for extensive adaptation and organization following a neural insult. Recent research, however, suggests that there are limits to this ability to adapt and organize. Results from a another communicative system, affect, suggest that children with unilateral pre- or perinatal stroke show similar (albeit subtler) effects to adults with homologous late-onset injuries. This chapter presents findings on language development in children who sustained a pre- or perinatal unilateral stroke, and complements these studies with a discussion of affective expression in these same children. These prospective studies of children with perinatal stroke provide a unique window into the development of the neural substrates for language and affect. Specifically, they afford a context to investigate the degree to which particular brain regions may be privileged for specific behavioral functions, as well as how the developing brain adapts to organize alternative pathways in the wake of an early insult.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiao Lin ◽  
Jiahui Deng ◽  
Kai Yuan ◽  
Qiandong Wang ◽  
Lin Liu ◽  
...  

AbstractThe majority of smokers relapse even after successfully quitting because of the craving to smoking after unexpectedly re-exposed to smoking-related cues. This conditioned craving is mediated by reward memories that are frequently experienced and stubbornly resistant to treatment. Reconsolidation theory posits that well-consolidated memories are destabilized after retrieval, and this process renders memories labile and vulnerable to amnestic intervention. This study tests the retrieval reconsolidation procedure to decrease nicotine craving among people who smoke. In this study, 52 male smokers received a single dose of propranolol (n = 27) or placebo (n = 25) before the reactivation of nicotine-associated memories to impair the reconsolidation process. Craving for smoking and neural activity in response to smoking-related cues served as primary outcomes. Functional magnetic resonance imaging was performed during the memory reconsolidation process. The disruption of reconsolidation by propranolol decreased craving for smoking. Reactivity of the postcentral gyrus in response to smoking-related cues also decreased in the propranolol group after the reconsolidation manipulation. Functional connectivity between the hippocampus and striatum was higher during memory reconsolidation in the propranolol group. Furthermore, the increase in coupling between the hippocampus and striatum positively correlated with the decrease in craving after the reconsolidation manipulation in the propranolol group. Propranolol administration before memory reactivation disrupted the reconsolidation of smoking-related memories in smokers by mediating brain regions that are involved in memory and reward processing. These findings demonstrate the noradrenergic regulation of memory reconsolidation in humans and suggest that adjunct propranolol administration can facilitate the treatment of nicotine dependence. The present study was pre-registered at ClinicalTrials.gov (registration no. ChiCTR1900024412).


Author(s):  
Brandon Gunasekera ◽  
Kelly Diederen ◽  
Sagnik Bhattacharyya

Abstract Background Evidence suggests that an overlap exists between the neurobiology of psychotic disorders and the effects of cannabinoids on neurocognitive and neurochemical substrates involved in reward processing. Aims We investigate whether the psychotomimetic effects of delta-9-tetrahydrocannabinol (THC) and the antipsychotic potential of cannabidiol (CBD) are underpinned by their effects on the reward system and dopamine. Methods This narrative review focuses on the overlap between altered dopamine signalling and reward processing induced by cannabinoids, pre-clinically and in humans. A systematic search was conducted of acute cannabinoid drug-challenge studies using neuroimaging in healthy subjects and those with psychosis Results There is evidence of increased striatal presynaptic dopamine synthesis and release in psychosis, as well as abnormal engagement of the striatum during reward processing. Although, acute THC challenges have elicited a modest effect on striatal dopamine, cannabis users generally indicate impaired presynaptic dopaminergic function. Functional MRI studies have identified that a single dose of THC may modulate regions involved in reward and salience processing such as the striatum, midbrain, insular, and anterior cingulate, with some effects correlating with the severity of THC-induced psychotic symptoms. CBD may modulate brain regions involved in reward/salience processing in an opposite direction to that of THC. Conclusions There is evidence to suggest modulation of reward processing and its neural substrates by THC and CBD. Whether such effects underlie the psychotomimetic/antipsychotic effects of these cannabinoids remains unclear. Future research should address these unanswered questions to understand the relationship between endocannabinoid dysfunction, reward processing abnormalities, and psychosis.


2021 ◽  
Vol 15 ◽  
Author(s):  
Daniel A. Llano ◽  
Susanna S. Kwok ◽  
Viswanath Devanarayan ◽  

Multiple epidemiological studies have revealed an association between presbycusis and Alzheimer’s Disease (AD). Unfortunately, the neurobiological underpinnings of this relationship are not clear. It is possible that the two disorders share a common, as yet unidentified, risk factor, or that hearing loss may independently accelerate AD pathology. Here, we examined the relationship between reported hearing loss and brain volumes in normal, mild cognitive impairment (MCI) and AD subjects using a publicly available database. We found that among subjects with AD, individuals that reported hearing loss had smaller brainstem and cerebellar volumes in both hemispheres than individuals without hearing loss. In addition, we found that these brain volumes diminish in size more rapidly among normal subjects with reported hearing loss and that there was a significant interaction between cognitive diagnosis and the relationship between reported hearing loss and these brain volumes. These data suggest that hearing loss is linked to brainstem and cerebellar pathology, but only in the context of the pathological state of AD. We hypothesize that the presence of AD-related pathology in both the brainstem and cerebellum creates vulnerabilities in these brain regions to auditory deafferentation-related atrophy. These data have implications for our understanding of the potential neural substrates for interactions between hearing loss and AD.


2020 ◽  
Vol 30 (7) ◽  
pp. 4076-4091
Author(s):  
Ryu Ohata ◽  
Tomohisa Asai ◽  
Hiroshi Kadota ◽  
Hiroaki Shigemasu ◽  
Kenji Ogawa ◽  
...  

Abstract The sense of agency is defined as the subjective experience that “I” am the one who is causing the action. Theoretical studies postulate that this subjective experience is developed through multistep processes extending from the sensorimotor to the cognitive level. However, it remains unclear how the brain processes such different levels of information and constitutes the neural substrates for the sense of agency. To answer this question, we combined two strategies: an experimental paradigm, in which self-agency gradually evolves according to sensorimotor experience, and a multivoxel pattern analysis. The combined strategies revealed that the sensorimotor, posterior parietal, anterior insula, and higher visual cortices contained information on self-other attribution during movement. In addition, we investigated whether the found regions showed a preference for self-other attribution or for sensorimotor information. As a result, the right supramarginal gyrus, a portion of the inferior parietal lobe (IPL), was found to be the most sensitive to self-other attribution among the found regions, while the bilateral precentral gyri and left IPL dominantly reflected sensorimotor information. Our results demonstrate that multiple brain regions are involved in the development of the sense of agency and that these show specific preferences for different levels of information.


2014 ◽  
Vol 26 (5) ◽  
pp. 1131-1140 ◽  
Author(s):  
Malia Mason ◽  
Joe C. Magee ◽  
Susan T. Fiske

The negotiation of social order is intimately connected to the capacity to infer and track status relationships. Despite the foundational role of status in social cognition, we know little about how the brain constructs status from social interactions that display it. Although emerging cognitive neuroscience reveals that status judgments depend on the intraparietal sulcus, a brain region that supports the comparison of targets along a quantitative continuum, we present evidence that status judgments do not necessarily reduce to ranking targets along a quantitative continuum. The process of judging status also fits a social interdependence analysis. Consistent with third-party perceivers judging status by inferring whose goals are dictating the terms of the interaction and who is subordinating their desires to whom, status judgments were associated with increased recruitment of medial pFC and STS, brain regions implicated in mental state inference.


2003 ◽  
Vol 15 (7) ◽  
pp. 1028-1038 ◽  
Author(s):  
Natalia S. Lawrence ◽  
Thomas J. Ross ◽  
Ray Hoffmann ◽  
Hugh Garavan ◽  
Elliot A. Stein

Sustained attention deficits occur in several neuropsychiatric disorders. However, the underlying neurobiological mechanisms are still incompletely understood. To that end, functional MRI was used to investigate the neural substrates of sustained attention (vigilance) using the rapid visual information processing (RVIP) task in 25 healthy volunteers. In order to better understand the neural networks underlying attentional abilities, brain regions where task-induced activation correlated with task performance were identified. Performance of the RVIP task activated a network of frontal, parietal, occipital, thalamic, and cerebellar regions. Deactivation during task performance was seen in the anterior and posterior cingulate, insula, and the left temporal and parahippocampal gyrus. Good task performance, as defined by better detection of target stimuli, was correlated with enhanced activation in predominantly right fronto-parietal regions and with decreased activation in predominantly left temporo-limbic and cingulate areas. Factor analysis revealed that these performance-correlated regions were grouped into two separate networks comprised of positively activated and negatively activated intercorrelated regions. Poor performers failed to significantly activate or deactivate these networks, whereas good performers either activated the positive or deactivated the negative network, or did both. The fact that both increased activation of task-specific areas and increased deactivation of task-irrelevant areas mediate cognitive functions underlying good RVIP task performance suggests two independent circuits, presumably reflecting different cognitive strategies, can be recruited to perform this vigilance task.


2011 ◽  
Vol 106 (6) ◽  
pp. 3145-3156 ◽  
Author(s):  
Christian H. Lemon ◽  
David M. Wilson ◽  
Susan M. Brasser

In randomly bred rats, orally applied ethanol stimulates neural substrates for appetitive sweet taste. To study associations between ethanol's oral sensory characteristics and genetically mediated ethanol preference, we made electrophysiological recordings of oral responses (spike density) by taste-sensitive nucleus tractus solitarii neurons in anesthetized selectively bred ethanol-preferring (P) rats and their genetically heterogeneous Wistar (W) control strain. Stimuli (25 total) included ethanol [3%, 5%, 10%, 15%, 25%, and 40% (vol/vol)], a sucrose series (0.01, 0.03, 0.1, 0.3, 0.5, and 1 M), and other sweet, salt, acidic, and bitter stimuli; 50 P and 39 W neurons were sampled. k-means clustering applied to the sucrose response series identified cells showing high (S1) or relatively low (S0) sensitivity to sucrose. A three-way factorial analysis revealed that activity to ethanol was influenced by a neuron's sensitivity to sucrose, ethanol concentration, and rat line ( P = 0.01). Ethanol produced concentration-dependent responses in S1 neurons that were larger than those in S0 cells. Although responses to ethanol by S1 cells did not differ between lines, neuronal firing rates to ethanol in S0 cells increased across concentration only in P rats. Correlation and multivariate analyses revealed that ethanol evoked responses in W neurons that were strongly and selectively associated with activity to sweet stimuli, whereas responses to ethanol by P neurons were not easily associated with activity to representative sweet, sodium salt, acidic, or bitter stimuli. These findings show differential central neural representation of oral ethanol between genetically heterogeneous rats and P rats genetically selected to prefer alcohol.


Sign in / Sign up

Export Citation Format

Share Document