scholarly journals Insulin immuno-neutralization in fed chickens: effects on liver and muscle transcriptome

2012 ◽  
Vol 44 (5) ◽  
pp. 283-292 ◽  
Author(s):  
Jean Simon ◽  
Dragan Milenkovic ◽  
Estelle Godet ◽  
Cedric Cabau ◽  
Anne Collin ◽  
...  

Chickens mimic an insulin-resistance state by exhibiting several peculiarities with regard to plasma glucose level and its control by insulin. To gain insight into the role of insulin in the control of chicken transcriptome, liver and leg muscle transcriptomes were compared in fed controls and “diabetic” chickens, at 5 h after insulin immuno-neutralization, using 20.7K-chicken oligo-microarrays. At a level of false discovery rate <0.01, 1,573 and 1,225 signals were significantly modified by insulin privation in liver and muscle, respectively. Microarray data agreed reasonably well with qRT-PCR and some protein level measurements. Differentially expressed mRNAs with human ID were classified using Biorag analysis and Ingenuity Pathway Analysis. Multiple metabolic pathways, structural proteins, transporters and proteins of intracellular trafficking, major signaling pathways, and elements of the transcriptional control machinery were largely represented in both tissues. At least 42 mRNAs have already been associated with diabetes, insulin resistance, obesity, energy expenditure, or identified as sensors of metabolism in mice or humans. The contribution of the pathways presently identified to chicken physiology (particularly those not yet related to insulin) needs to be evaluated in future studies. Other challenges include the characterization of “unknown” mRNAs and the identification of the steps or networks, which disturbed tissue transcriptome so extensively, quickly after the turning off of the insulin signal. In conclusion, pleiotropic effects of insulin in chickens are further evidenced; major pathways controlled by insulin in mammals have been conserved despite the presence of unique features of insulin signaling in chicken muscle.

2019 ◽  
Vol 5 (5) ◽  
pp. eaav5562 ◽  
Author(s):  
Ruochan Chen ◽  
Ling Zeng ◽  
Shan Zhu ◽  
Jiao Liu ◽  
Herbert J. Zeh ◽  
...  

The ability of cytosolic lipopolysaccharide (LPS) to activate caspase-11–dependent nonclassical inflammasome is intricately controlled to avoid excessive inflammatory responses. However, very little is known about the regulatory role of various metabolic pathways in the control of caspase-11 activation. Here, we demonstrate that l-adrenaline can act on receptor ADRA2B to inhibit the activation of the caspase-11 inflammasome by cytosolic LPS or Escherichia coli infection in macrophages. l-adrenaline–induced cAMP production via the enzyme ADCY4 promotes protein kinase A (PKA) activation, which then blocks the caspase-11–mediated proteolytic maturation of interleukin-1β, gasdermin D (GSDMD) cleavage, and consequent DAMP release. Inhibition of PDE8A-mediated cAMP hydrolysis limits caspase-11 inflammasome activation and pyroptosis in macrophages. Consequently, pharmacological modulation of the ADRA2B-ADCY4-PDE8A-PKA axis, knockout of caspase-11 (Casp11−/−), or Gsdmd inactivation (GsdmdI105N/I105N) similarly protects against LPS-induced lethality in poly(I:C)-primed mice. Our results provide previously unidentified mechanistic insight into immune regulation by cAMP and represent a proof of concept that immunometabolism constitutes a potential therapeutic target in sepsis.


2019 ◽  
Vol 99 (7) ◽  
pp. 1569-1577 ◽  
Author(s):  
Sara Righi ◽  
Isabella Maletti ◽  
Ferruccio Maltagliati ◽  
Alberto Castelli ◽  
Michele Barbieri ◽  
...  

AbstractThe amphinomid fireworm Hermodice carunculata is a potentially invasive species reported throughout the subtropical Atlantic Ocean and the Mediterranean Sea, which is known as a generalist predator and opportunistic feeder. The ongoing climate changes and seawater warming may favour fireworm poleward range expansions and density increases. Our results provide the first investigation into a population which has purportedly been spreading widely in the Salento Peninsula (Apulia, Italy). The specimens were analysed using allometric variables and molecular markers. The best morphometric parameters to estimate individual size were determined as key information for future studies on fireworm population dynamics. To phylogeographically characterize the Apulian population, sequences of the mitochondrial COI and 16S rDNA regions were obtained from a pool of individuals and treated together with those of Atlantic specimens retrieved from GenBank. The estimates of genetic variability for Apulian population were consistent with those recently reported in the literature. Inferences on demographic history analysis confirmed a recent expansion event in Apulia, as has been recounted by fishermen and scuba divers during recent years. Overall, these results constitute a crucial step in the characterization of present-day H. carunculata populations, and provide greater insight into fireworm population ecology.


2013 ◽  
Vol 90 ◽  
pp. 78-89 ◽  
Author(s):  
Matthieu Gaucher ◽  
Thomas Dugé de Bernonville ◽  
David Lohou ◽  
Sylvain Guyot ◽  
Thomas Guillemette ◽  
...  

2018 ◽  
Vol 200 (18) ◽  
Author(s):  
James A. Budnick ◽  
Lauren M. Sheehan ◽  
Lin Kang ◽  
Pawel Michalak ◽  
Clayton C. Caswell

ABSTRACTElucidating the function of proteins <50 amino acids in length is no small task. Nevertheless, small proteins can play vital roles in the lifestyle of bacteria and influence the virulence of pathogens; thus, the investigation of the small proteome is warranted. Recently, our group identified theBrucella abortusprotein VtlR as a transcriptional activator of four genes, one of which is the well-studied small regulatory RNA AbcR2, while the other three genes encode hypothetical small proteins, two of which are highly conserved among the orderRhizobiales. This study provides evidence that all three genes encode authentic small proteins and that all three are highly expressed under oxidative stress, low-pH, and stationary-phase growth conditions. Fractionation of the cells revealed that the proteins are localized to the membranes ofB. abortus. We demonstrate that the small proteins under the transcriptional control of VtlR are not accountable for attenuation observed with theB. abortusvtlRdeletion strain. However, there is an association between VtlR-regulated genes and growth inhibition in the presence of the sugarl-fucose. Subsequent transcriptomic analyses revealed thatB. abortusinitiates the transcription of a locus encoding a putative sugar transport and utilization system when the bacteria are cultured in the presence ofl-fucose. Altogether, our observations characterize the role of the VtlR-controlled small proteins BAB1_0914, BAB2_0512, and BAB2_0574 in the biology ofB. abortus, particularly in the capacity of the bacteria to utilizel-fucose.IMPORTANCEDespite being one of the most common zoonoses worldwide, there is currently no human vaccine to combat brucellosis. Therefore, a better understanding of the pathogenesis and biology ofBrucellaspp., the causative agent of brucellosis, is essential for the discovery of novel therapeutics against these highly infectious bacteria. In this study, we further characterize the virulence-associated transcriptional regulator VtlR inBrucella abortus. Our findings not only shed light on our current understanding of a virulence related genetic system inBrucellaspp. but also increase our knowledge of small proteins in the field of bacteriology.


Author(s):  
Robert J. Nichols ◽  
Benjamin LaFrance ◽  
Naiya R. Phillips ◽  
Luke M. Oltrogge ◽  
Luis E. Valentin-Alvarado ◽  
...  

AbstractProkaryotic nanocompartments, also known as encapsulins, are a recently discovered proteinaceous organelle in prokaryotes that compartmentalize cargo enzymes. While initial studies have begun to elucidate the structure and physiological roles of encapsulins, bioinformatic evidence suggests that a great diversity of encapsulin nanocompartments remains unexplored. Here, we describe a novel encapsulin in the freshwater cyanobacterium Synechococcus elongatus PCC 7942. This nanocompartment is upregulated upon sulfate starvation and encapsulates a cysteine desulfurase enzyme via an N-terminal targeting sequence. Using cryoelectron microscopy, we have determined the structure of the nanocompartment complex to 2.2 Å resolution. Lastly, biochemical characterization of the complex demonstrated that the activity of the cysteine desulfurase is enhanced upon encapsulation. Taken together, our discovery, structural analysis, and enzymatic characterization of this prokaryotic nanocompartment provide a foundation for future studies seeking to understand the physiological role of this encapsulin in various bacteria.


2020 ◽  
Author(s):  
Hua-Ying Wang ◽  
Wei Zhang ◽  
Jian-Hua Dong ◽  
Hao Wu ◽  
Yuan-Hong Wang ◽  
...  

Abstract The floral scent of plants plays a key role in plant reproduction through the communication between plants and pollinators. Aquilegia as a model species for studying evolution, however, there have been few studies on the floral scents and relationships between floral scents and pollination for Aquilegia taxa. In this study, three types of solid-phase micro-extraction (SPME) fiber coatings (DVB/PDMS, CAR/PDMS, DVB/CAR/PDMS) were evaluated for their performance in extracting volatile organic compounds (VOCs) from flowers of Aquilegia amurensis, which can to contribute to the future studies of elucidating the role of floral scents in the pollination process. In total, 55 VOCs were identified, and among them, 50, 47 and 45 VOCs were extracted by the DVB/CAR/PDMS fiber, CAR/PDMS fiber and DVB/PDMS fibers, respectively. Only 30 VOCs were detected in A. japonica taxa. Furthermore, the relative contents of 8 VOCs were significant different (VIP > 1 and p < 0.05) between the A. amurensis and A. japonica. Therefore, the results can be applied in new studies of the relationships between the chemical composition of floral scents and the processes of attraction of pollinator. It may provide new ideas for rapid evolution and frequent interspecific hybridization of Aquilegia


2006 ◽  
Vol 975 ◽  
Author(s):  
Sara Elizabeth Olesiak ◽  
Michelle Oyen ◽  
Matthew Sponheimer ◽  
Jaelyn J. Eberle ◽  
Virginia L. Ferguson

ABSTRACTBone plays a key role in the paleontological and archeological records and can provide insight into the biology, ecology and the environment of ancient vertebrates. Examination of bone at the tissue level reveals a definitive relationship between nanomechanical properties and the local organic content, mineral content, and microstructural organization. However, it is unclear as to how these properties change following fossilization, or diagenesis, where the organic phase is rapidly removed and the remaining mineral phase is reinforced by the deposition of apatites, calcites, and other minerals. While the process of diagenesis is poorly understood, its outcome clearly results in the potential for dramatic alteration of the mechanical response of biological tissues. In this study, fossilized specimens of mammalian long bones, collected from Colorado and Wyoming, were studied for mechanical variations. Nanoindentation performed in both longitudinal and transverse directions revealed preservation of bone's natural anisotropy as transverse modulus values were consistently smaller than longitudinal values. Additionally modulus values of fossilized bone from 35.0 to 89.1 GPa increased linearly with logarithm of the sample's age. Future studies will aim to clarify what mechanical and material elements of bone are retained during diagenesis as bone becomes part of the geologic milieu.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 628 ◽  
Author(s):  
Guido Rianna ◽  
Luca Comegna ◽  
Luca Pagano ◽  
Luciano Picarelli ◽  
Alfredo Reder

A significant part of the recent geotechnical literature concerning pyroclastic soils is focused on the characterization of the hydrological effects of precipitations and their implications for the stability conditions of unsaturated sloping covers. Recent experience shows that suction-induced strength reduction is influenced by various factors including hydraulic hysteresis. A deeper insight into the hysteretic water retention behavior of these materials and its effects upon their response to dry/wetting conditions is a major goal of this paper, which exploits the data provided by the monitoring of a volcanic ash. Based on the parameters retrieved from data calibration, the hydrological response of a virtual slope subject to one-dimensional rainfall infiltration is investigated by numerical analyses and compared with the results obtained through the usually adopted non-hysteretic approaches. The analysis demonstrates that considering the hysteretic behavior may be crucial for a proper evaluation of the conditions leading to slope failure.


Sign in / Sign up

Export Citation Format

Share Document