scholarly journals Machine learning-based classification and diagnosis of clinical cardiomyopathies

2020 ◽  
Vol 52 (9) ◽  
pp. 391-400 ◽  
Author(s):  
Ahmad Alimadadi ◽  
Ishan Manandhar ◽  
Sachin Aryal ◽  
Patricia B. Munroe ◽  
Bina Joe ◽  
...  

Dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM) are two common types of cardiomyopathies leading to heart failure. Accurate diagnostic classification of different types of cardiomyopathies is critical for precision medicine in clinical practice. In this study, we hypothesized that machine learning (ML) can be used as a novel diagnostic approach to analyze cardiac transcriptomic data for classifying clinical cardiomyopathies. RNA-Seq data of human left ventricle tissues were collected from 41 DCM patients, 47 ICM patients, and 49 nonfailure controls (NF) and tested using five ML algorithms: support vector machine with radial kernel (svmRadial), neural networks with principal component analysis (pcaNNet), decision tree (DT), elastic net (ENet), and random forest (RF). Initial ML classifications achieved ~93% accuracy (svmRadial) for NF vs. DCM, ~82% accuracy (RF) for NF vs. ICM, and ~80% accuracy (ENet and svmRadial) for DCM vs. ICM. Next, 50 highly contributing genes (HCGs) for classifying NF and DCM, 68 HCGs for classifying NF and ICM, and 59 HCGs for classifying DCM and ICM were selected for retraining ML models. Impressively, the retrained models achieved ~90% accuracy (RF) for NF vs. DCM, ~90% accuracy (pcaNNet) for NF vs. ICM, and ~85% accuracy (pcaNNet and RF) for DCM vs. ICM. Pathway analyses further confirmed the involvement of those selected HCGs in cardiac dysfunctions such as cardiomyopathies, cardiac hypertrophies, and fibrosis. Overall, our study demonstrates the promising potential of using artificial intelligence via ML modeling as a novel approach to achieve a greater level of precision in diagnosing different types of cardiomyopathies.

Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Xi Cheng ◽  
Ahmad Alimadadi ◽  
Ishan Manandhar ◽  
Sachin Aryal ◽  
Patricia B Munroe ◽  
...  

Dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM) are predisposing conditions for increased risk of cardiovascular diseases including heart failure, valve disease and arrhythmias. An accurate diagnostic strategy of differentially classifying different types of cardiomyopathies could contribute to precision medicine in routine clinical care. We hypothesized that artificial intelligence (AI) could be trained with cardiac transcriptomic data for diagnostic classifications of clinical cardiomyopathies. To test this hypothesis, various supervised machine learning (ML) models, such as support vector machine with radial kernel (svmRadial), neural networks with principal component analysis (pcaNNet), decision tree (DT), elastic net (ENet) and random forest (RF), were used to analyze RNA-seq data of human left ventricle tissues collected from 41 DCM patients, 47 ICM patients and 49 non-failure controls (NF). Initial ML classifications achieved an AUC of ~0.96 (ENet, pcaNNet and svmRadial) for NF vs DCM, an AUC of ~0.89 (RF) for NF vs ICM, and an AUC of ~0.90 (svmRadial) for DCM vs ICM. Next, 50 highly contributing genes (HCGs) for classifying NF and DCM, 68 HCGs for classifying NF and ICM, and 59 HCGs for classifying DCM and ICM were selected for re-training ML models. The re-trained models achieved an AUC of ~0.96 (RF) for NF vs DCM, an AUC of ~0.97 (pcaNNet) for NF vs ICM, and an AUC of ~0.94 (RF) for DCM vs ICM. Pathway analyses of the selected HCGs further demonstrated their pathophysiological roles in cardiovascular dysfunctions including cardiomyopathies. Overall, our study demonstrates the promising potential of using AI via ML models as a novel approach to achieve a greater level of precision in diagnosing different types of clinical cardiomyopathies.


Electro cardiogram (ECG) signals records the vital information about the condition of heart of an individual. In this paper, we are aiming at preparing a model for classification of different types of heart arrhythmia. The MIT-BIH public database for heart arrhythmia has been used in the case of study. There are basically thirteen types of heart arrhythmia. The Principal Component Analysis (PCA) algorithm has been used to collect various important features of heart beats from an ECG signal. Then these features are trained and tested under Support Vector Machine (SVM) algorithm to classify the thirteen classes of heart arrhythmia. In the paper the proposed algorithm has been discussed and the outcome results have been validated. The result shows that the accuracy of our classifier in our research work is more than 91% in most of the cases.


2014 ◽  
Author(s):  
Gokmen Zararsiz ◽  
Dincer Goksuluk ◽  
Selcuk Korkmaz ◽  
Vahap Eldem ◽  
Izzet Parug Duru ◽  
...  

Background RNA sequencing (RNA-Seq) is a powerful technique for transcriptome profiling of the organisms that uses the capabilities of next-generation sequencing (NGS) technologies. Recent advances in NGS let to measure the expression levels of tens to thousands of transcripts simultaneously. Using such information, developing expression-based classification algorithms is an emerging powerful method for diagnosis, disease classification and monitoring at molecular level, as well as providing potential markers of disease. Here, we present the bagging support vector machines (bagSVM), a machine learning approach and bagged ensembles of support vector machines (SVM), for classification of RNA-Seq data. The bagSVM basically uses bootstrap technique and trains each single SVM separately; next it combines the results of each SVM model using majority-voting technique. Results We demonstrate the performance of the bagSVM on simulated and real datasets. Simulated datasets are generated from negative binomial distribution under different scenarios and real datasets are obtained from publicly available resources. A deseq normalization and variance stabilizing transformation (vst) were applied to all datasets. We compared the results with several classifiers including Poisson linear discriminant analysis (PLDA), single SVM, classification and regression trees (CART), and random forests (RF). In slightly overdispersed data, all methods, except CART algorithm, performed well. Performance of PLDA seemed to be best and RF as second best for very slightly and substantially overdispersed datasets. While data become more spread, bagSVM turned out to be the best classifier. In overall results, bagSVM and PLDA had the highest accuracies. Conclusions According to our results, bagSVM algorithm after vst transformation can be a good choice of classifier for RNA-Seq datasets mostly for overdispersed ones. Thus, we recommend researchers to use bagSVM algorithm for the purpose of classification of RNA-Seq data. PLDA algorithm should be a method of choice for slight and moderately overdispersed datasets. An R/BIOCONDUCTOR package MLSeq with a vignette is freely available at http://www.bioconductor.org/packages/2.14/bioc/html/MLSeq.html Keywords: Bagging, machine learning, RNA-Seq classification, support vector machines, transcriptomics


2019 ◽  
Vol 8 (4) ◽  
pp. 3208-3216

Sorting of images has been a challenge in Machine Learning Algorithms over the years. Various algorithms have been proposed to sort an image but none of them are able to sort the image clearly. The drawback of the existing systems is that the sorted image is not clearly identified. So, to overcome this drawback we have proposed a novel approach to sort the children of a tree and match them with the existing designs. The images will be sorted on the basis of the class of the image. The images are taken from the image and manual binning of those images are done. Then the images are trained and tested. GLCM feature is extracted from the trained and tested images which are later on fed to the SVM classifier. The classification of image is then done with the help of SVM classifier. Around 7000 images are trained on SVM and used for classification. More than 300 different classes have been created in the database for comparison. Realtime images of child items are captured and fed to the SVM for classifying. The main application of this image is the use in distinguishing the designs in the ornaments. The various parts of the ornaments can be differentiated clearly. Thus, the proposed method is precise as compared to the existing methods.


Author(s):  
Hicham Riri ◽  
Mohammed Ed-Dhahraouy ◽  
Abdelmajid Elmoutaouakkil ◽  
Abderrahim Beni-Hssane ◽  
Farid Bourzgui

The purpose of this study is to investigate computer vision and machine learning methods for classification of orthodontic images in order to provide orthodontists with a solution for multi-class classification of patients’ images to evaluate the evolution of their treatment. Of which, we proposed three algorithms based on extracted features, such as facial features and skin colour using YCbCrcolour space, assigned to nodes of a decision tree to classify orthodontic images: an algorithm for intra-oral images, an algorithm for mould images and an algorithm for extra-oral images. Then, we compared our method by implementing the Local Binary Pattern (LBP) algorithm to extract textural features from images. After that, we applied the principal component analysis (PCA) algorithm to optimize the redundant parameters in order to classify LBP features with six classifiers; Quadratic Support Vector Machine (SVM), Cubic SVM, Radial Basis Function SVM, Cosine K-Nearest Neighbours (KNN), Euclidian KNN, and Linear Discriminant Analysis (LDA). The presented algorithms have been evaluated on a dataset of images of 98 different patients, and experimental results demonstrate the good performances of our proposed method with a high accuracy compared with machine learning algorithms. Where LDA classifier achieves an accuracy of 84.5%.


2018 ◽  
Vol 72 (12) ◽  
pp. 1774-1780 ◽  
Author(s):  
Irene Marivel Nolasco Perez ◽  
Amanda Teixeira Badaró ◽  
Sylvio Barbon ◽  
Ana Paula AC Barbon ◽  
Marise Aparecida Rodrigues Pollonio ◽  
...  

Identification of different chicken parts using portable equipment could provide useful information for the processing industry and also for authentication purposes. Traditionally, physical–chemical analysis could deal with this task, but some disadvantages arise such as time constraints and requirements of chemicals. Recently, near-infrared (NIR) spectroscopy and machine learning (ML) techniques have been widely used to obtain a rapid, noninvasive, and precise characterization of biological samples. This study aims at classifying chicken parts (breasts, thighs, and drumstick) using portable NIR equipment combined with ML algorithms. Physical and chemical attributes (pH and L*a*b* color features) and chemical composition (protein, fat, moisture, and ash) were determined for each sample. Spectral information was acquired using a portable NIR spectrophotometer within the range 900–1700 nm and principal component analysis was used as screening approach. Support vector machine and random forest algorithms were compared for chicken meat classification. Results confirmed the possibility of differentiating breast samples from thighs and drumstick with 98.8% accuracy. The results showed the potential of using a NIR portable spectrophotometer combined with a ML approach for differentiation of chicken parts in the processing industry.


Author(s):  
Hyeuk Kim

Unsupervised learning in machine learning divides data into several groups. The observations in the same group have similar characteristics and the observations in the different groups have the different characteristics. In the paper, we classify data by partitioning around medoids which have some advantages over the k-means clustering. We apply it to baseball players in Korea Baseball League. We also apply the principal component analysis to data and draw the graph using two components for axis. We interpret the meaning of the clustering graphically through the procedure. The combination of the partitioning around medoids and the principal component analysis can be used to any other data and the approach makes us to figure out the characteristics easily.


2020 ◽  
Vol 15 ◽  
Author(s):  
Shuwen Zhang ◽  
Qiang Su ◽  
Qin Chen

Abstract: Major animal diseases pose a great threat to animal husbandry and human beings. With the deepening of globalization and the abundance of data resources, the prediction and analysis of animal diseases by using big data are becoming more and more important. The focus of machine learning is to make computers learn how to learn from data and use the learned experience to analyze and predict. Firstly, this paper introduces the animal epidemic situation and machine learning. Then it briefly introduces the application of machine learning in animal disease analysis and prediction. Machine learning is mainly divided into supervised learning and unsupervised learning. Supervised learning includes support vector machines, naive bayes, decision trees, random forests, logistic regression, artificial neural networks, deep learning, and AdaBoost. Unsupervised learning has maximum expectation algorithm, principal component analysis hierarchical clustering algorithm and maxent. Through the discussion of this paper, people have a clearer concept of machine learning and understand its application prospect in animal diseases.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jing Xu ◽  
Xiangdong Liu ◽  
Qiming Dai

Abstract Background Hypertrophic cardiomyopathy (HCM) represents one of the most common inherited heart diseases. To identify key molecules involved in the development of HCM, gene expression patterns of the heart tissue samples in HCM patients from multiple microarray and RNA-seq platforms were investigated. Methods The significant genes were obtained through the intersection of two gene sets, corresponding to the identified differentially expressed genes (DEGs) within the microarray data and within the RNA-Seq data. Those genes were further ranked using minimum-Redundancy Maximum-Relevance feature selection algorithm. Moreover, the genes were assessed by three different machine learning methods for classification, including support vector machines, random forest and k-Nearest Neighbor. Results Outstanding results were achieved by taking exclusively the top eight genes of the ranking into consideration. Since the eight genes were identified as candidate HCM hallmark genes, the interactions between them and known HCM disease genes were explored through the protein–protein interaction (PPI) network. Most candidate HCM hallmark genes were found to have direct or indirect interactions with known HCM diseases genes in the PPI network, particularly the hub genes JAK2 and GADD45A. Conclusions This study highlights the transcriptomic data integration, in combination with machine learning methods, in providing insight into the key hallmark genes in the genetic etiology of HCM.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2503
Author(s):  
Taro Suzuki ◽  
Yoshiharu Amano

This paper proposes a method for detecting non-line-of-sight (NLOS) multipath, which causes large positioning errors in a global navigation satellite system (GNSS). We use GNSS signal correlation output, which is the most primitive GNSS signal processing output, to detect NLOS multipath based on machine learning. The shape of the multi-correlator outputs is distorted due to the NLOS multipath. The features of the shape of the multi-correlator are used to discriminate the NLOS multipath. We implement two supervised learning methods, a support vector machine (SVM) and a neural network (NN), and compare their performance. In addition, we also propose an automated method of collecting training data for LOS and NLOS signals of machine learning. The evaluation of the proposed NLOS detection method in an urban environment confirmed that NN was better than SVM, and 97.7% of NLOS signals were correctly discriminated.


Sign in / Sign up

Export Citation Format

Share Document